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Abstract: Information integration requires manipulating data and metadata in ways
that in general go beyond a single existing transformation formalism. As a result,
a complete source-to-target mapping can only be expressed by combining different
techniques like query languages, wrappers, scripting, etc., which are often specific
to a single integration platform or vendor. Such a mapping is not portable across
different alternative deployment scenarios, thus limiting the mapping’s reusability and
putting the considerable investment required to create it at risk. To avoid this vendor
lock-in, we define an integrated representation for operations on arbitrary data and
metadata that is independent of any specific metamodel or transformation language.
Using it, we can express mappings in an abstract, vendor-neutral form, improving the
interoperability of integration tools and the flexibility for the deployment of mappings.

1 Introduction

The goal of information integration is to provide a homogeneous, integrated view over
multiple heterogeneous data sources. To overcome heterogeneity, a mapping or integration
plan has to be developed that transforms the data found in the sources into the data model,
structures, and formats of a desired target schema. Requiring a thorough understanding of
data source semantics, integration planning remains essentially a manual process, making
it perhaps the most time-consuming and expensive aspect of information integration. Once
an integration plan has been created, it has to be deployed on a runtime platform. This can
be full-fledged integration middleware like a federated DBMS or an ETL tool, but can also
be a generic programming tool, a stylesheet, scripts used in a hand-crafted solution, or a
combination of all of the above. Together, integration plan and runtime platform constitute
the integration system that provides the target schema.

Information integration subsumes numerous tasks, which have to represent and modify
metadata and data in some way: Metadata and data have to be translated between different
metamodels or have to be analyzed for semantical correspondencies (schema and record
matching), mappings that translate data between different schemas have to be developed,
etc. While powerful integration tools and information system implementations exist for
specific problems, the interoperability between these systems remains limited. E.g., there
is no agreed standard for the exchange of discovered matches between schema matching
and mapping tools. Even worse, the mapping tools themselves are commonly built to
create mappings for a single integration platform only – consequently, the resulting in-
tegration plan is specific to the platform’s internal data model (IDM) and infrastructure



(e.g., the wrappers). This tight coupling of integration tools, integration plan, and runtime
platform is often an accepted fact in the traditional integration scenarios within a single
organization. Here the requirements on the integrated view, the available data sources, and
the resources dedicated to the integration system are assumed to be stable. But once new
requirements go beyond what the original integration platform can handle, a migration to
a new platform may be unavoidable.

In dynamic, open-world integration settings such as a grid environment, such restrictions
are even less acceptable. With sources and users coming from different contexts, the de-
gree of heterogeneity between data sources and user requirements is likely to be even
greater than in a static, closed-world setting. Furthermore, grid data sources remain au-
tonomous and can join and leave the grid at any time, making the tedious and expensive
manual integration approach even less feasible. To enable the use of integration technol-
ogy in such scenarios, the PALADIN project (Pattern-based Approach to LArge-scale Dy-
namic INformation integration) [Gö05b] explores concepts and techniques to bring cost-
effective services for the planning and operation of integration systems to these new envi-
ronments. After an integration plan has been created, a redeployment of a grid integration
system can be necessary for several reasons: Service providers compete for customers in
both price and performance. Grid services – being inherently unreliable – can become un-
available. Varying loads or changes in available data replicas can also require a migration.

To gain the necessary flexibility for redeployment, both the static and the dynamic integra-
tion scenarios require an abstract, vendor-independent formalism to develop and describe
mappings. This allows not only to choose the best tools for each task during development,
but also gives flexibility for the deployment of the result.

In this paper, we introduce a metamodeling approach based on typed, attributed multi-
graphs that – unlike existing approaches – is well suited not only for the efficient repre-
sentation of metadata, but also for the representation of data. This is important, as many
integration tasks do not operate on metadata alone, e.g., operators that turn data to meta-
data or vice versa, or instance-based schema matching. We then introduce a formalism
based on graph transformations that is capable of describing arbitrary operations on our
data/metadata representation, as well as sequences of these operations, which we refer to
as transformation plans. We will demonstrate the formalism’s practical use by describing
the operational semantics of well-known data management operators and the chaining of
these operators to form an abstract integration plan. We will then discuss how these ab-
stract plans give us the desired flexibility, as they can be transformed into concrete plans
for deployment into specific runtime environments.

The remainder of this paper is structured as follows: Section 2 discusses the requirements
on an integrated method to represent data and metadata independently of specific meta-
models and introduces the Paladin Metamodeling Architecture (PMA), our graph-based
approach to satisfy these requirements. Section 3 introduces our graph transformation for-
malism. Section 4 classifies the types of operations it has to support. Section 5 provides
an example of its use for data management. Section 6 briefly discusses how abstract in-
tegration plans can be mapped to concrete plans. Section 7 gives an overview of related
work. Section 8 closes with a summary and an outlook on future work.



2 Graph-based Data and Metadata Representation

As the data/metadata representation plays a pivotal role for all subsequent operations, it
has to fulfill a number of sometimes contradictory requirements: (1) It should be able to
represent data and metadata naturally. This is required both as a conceptual foundation to
describe the semantics of data management operations which modify this data represen-
tation (and its associated metadata), and to support model management operations, which
also often depend on data samples or statistics. (2) It has to be extensible to support any
existing or future metamodel, but (3) should ideally be able to express common aspects
between the different metamodels, to allow their uniform handling. At the same time,
the representation must be (4) lossless, i.e., preserve metamodel-specific characteristics.
Finally, the representation of both data and metadata should be (5) efficient.

2.1 Paladin Metamodeling Architecture

Like similar approaches (e.g., [OMG06]), our graph model for generic data/metadata rep-
resentation, the Paladin Metamodeling Architecture (PMA) (Figure 1), is based on the con-
cept of metamodeling. The principal idea is to define a stack of (meta)layers. By instan-
tiating elements on a layer Mn, elements of the layer Mn−1 are modeled. Most approaches
use four layers: A meta-metamodel (M3), which is usually fixed, provides the central
concepts for defining different (new or existing) metamodels (M2), like SQL or XML.
The instances of the metamodels represent concrete application models or schemas (M1),
whose instances finally represent the application data (M0). The Paladin meta-metamodel
(PMM) (M3) defines all the concepts available to define concrete metamodels in a graph
model: A TypeGraph consists of GraphElements, the most important being NodeType and
EdgeType. AttributeTypes can be attached to any GraphElement, their Domain is defined
by refering to one of the built-in simple types. Note that the PMM is self-defining, i.e.,
every PMM element is also an instance of a PMM element. The PMM can therefore be
understood as a type graph for type graphs. Examples of type graphs representing concrete
metamodels (the SQL and XML metamodels) are shown in Figure 1 (M2). Any existing
or future metamodel can be introduced into the PMA by specifying a suitable type graph
(req. 2), which can be as detailed as required for a lossless representation (req. 4).

Each metamodel’s type graph elements should inherit from the elements of the Core type
graph, which capture common properties of existing data models like typing, inheritance,
nesting of features or namespaces (req. 3). This later allows any model to be interpreted in
terms of the Core metamodel, when model-specific aspects are not relevant. An essential
differentiating feature is the availability of the PMM as a base of inheritance for concrete
metamodels. Note how all elements of the Core, SQL and XML metamodels are both
instances (indicated by the underlined part of their label), as well as subclasses of PMM
elements (indicated in angle brackets). This allows the instances of type graphs (i.e, the
concrete models or schemas, like the excerpt of a small human resources SQL schema
shown in Figure 1 (M1)), to be themselves interpreted as type graphs that finally define
the structure of those graphs that represent data, as illustrated in Figure 1 (M0), fulfilling



req. 1. This way we receive a model-specific data representation, which is – like that of the
metadata – very efficient when compared to the generic representations found in the liter-
ature (req. 5): Schema, Table and Column are subclasses of NodeType, so their instances
define nodes on the data layer M0. SQLType and its subclasses are instances of NodeType
and a subclass of AttributeType. An instance of SQLType can therefore appear generically
as a node in the model diagram, but also in its specific interpretation as an attribute of a
node type instance to which it is connected by a hAtt edge (or one of its subclasses). The
SQL schema in Figure 1 shows the two value SQLTypes in both interpretations. Instanti-
ating the specific Table and Column instances with their attributes and the model-specific
EdgeTypes between them, we can represent the actual tuples and the values of the tu-
ple attributes. We reuse XML Schema’s [BM04] powerful simple type system for atomic
domains and for expressions and functions on them.
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Figure 1: The PMA metalayer stack

2.2 Related metamodeling approaches

Existing metamodeling approaches have inspired the PMA. However, all these approaches
have shortcomings, which we have addressed in PMA: The Common Warehouse Meta-
model (CWM) [OMG03a] aims to ease the exchange of metadata in data warehousing
scenarios. With its MOF meta-metamodel it is extensible (req. 2) and lossless (req. 4).



A Core metamodel, from which concrete metamodels inherit, captures common aspects
of different metamodels (req. 3). However, to represent data, the CWM uses a generic in-
stance metamodel. This violates the metalayer concept and is not natural (violating req. 1),
because data now resides on the same layer as metadata. This also results in a very verbose
data representation (see [OMG03a] 4.6), violating req. 5.

The Graph eXchange Language (GXL) [HSSW06] is primarily an XML format for the
exchange of graphs between different applications. But GXL also defines the language’s
underlying metamodel (the GXL metaschema, M2) of directed, nested hypergraphs, with
typed and attributed edges and nodes. Type graphs (M1) are used to define the valid
structure of graphs, and to specify the available node and edge types with their attributes.
To fulfill req. 2, type graphs have to be used to represent different metamodels. While this
allows the lossless representation of metadata (req. 4), GXL type graphs cannot import
and inherit from other type graphs. It is therefore impractical to define something like a
Core model (not satisfying req. 3). As actual metadata already resides on M0, we cannot
instantiate concrete models again, as they are not type graphs themselves. This leaves us
with no further metalayer to represent data, violating req. 1. A generic representation like
CWM’s instance model could be defined, which would, however, violate req. 5.

The semantic web standard RDF [MM04] provides the schema language RDFS, which
allows to define complete RDF schemas for any metamodel (fulfilling reqs. 2 and 4). Ar-
bitrary inheritance is possible between schemas, so a Core model can be defined (fullfilling
req. 3). RDF(S) abandons the rigid separation of metalayers. As a consequence, an RDF
Schema instance can inherit from RDF Schema constructs and can itself be interpreted
as an RDF Schema. This essentially allows an arbitrary number of metalayers (fulfilling
req. 1). However, RDF models tend to quickly become very complex and thus difficult
to understand and modify, as RDF does not have attributes for resources and properties.
While attributes for resources can be adequately represented with literal nodes, adding
attributes to properties requires the cumbersome reification mechanism (violating req. 5).

3 Graph Transformations

With the generic data/metadata representation introduced in the previous section, we will
now discuss how to describe operations that manipulate this representation by using a for-
malism based on graph transformations (GTs) (see [Hec06] for an overview, [AEH+99]
for an in-depth discussion). Graph transformations have been subject to research for ap-
proximately 30 years. However, despite being a powerful tool to describe modifications
of graph-like structures, they are still rarely used outside the graph community. On the
one hand, this is due to the lack of an accepted standard for intuitive specification of graph
transformations and differences in the operational semantics of these systems. On the other
hand, few graph transformation systems (GTSs) have reached a state of maturity beyond
that of research prototypes. Formalisms for specifying rules vary widely in their general
approach, their formal properties and in their expressiveness (which is closely related to
intellectual manageability of the resulting rule set). In this paper, it is not our intension to
discuss their individual benefits and drawbacks, but to propose the use of the Paladin Graph



Transformation Algebra (GTA), our variant of algebraic graph grammars (AGGs), both
for its expressiveness and – in our opinion – superior clarity of the resulting specification.
For a comparison of the different approaches refer to [BFG96]. AGGs are a generalisation
of Type-0 Chomsky grammars to non-linear structures. Like string grammars, an AGG
consists of a set of production rules, which specify individual graph transformations.

3.1 Production Rule Language

To meet our specific requirements, we defined a variant of existing production rule for-
malisms. We will illustrate its essential semantics by means of the simple production rule
shown in Figure 2. A production rule consists of a left- and a right-hand side (LHS, RHS),
a morphism M and an optional application condition (AC). The LHS consists of a graph
pattern, an abstract subgraph that describes which elements (nodes and edges) have to be
found in the input graph (often called host graph) for the production rule to be applicable.
To differentiate nodes and edges in a host graph from the nodes and edges on the LHS, we
refer to the latter as pattern nodes and pattern edges. In a GTS with typed graphs, the LHS
elements can specify a type test. The type test is given as the part of an element’s label
behind a colon. A subgraph of the host graph that matches a rule’s LHS is called a witness
graph or occurence of the LHS. In general, a rule can have several witness graphs in a given
host graph. A witness graph can be expressed as an occurence morphism, i.e., a mapping
of host graph elements to the pattern elements on the LHS of the rule. Morphisms are ex-
pressed by binding variables. In general, occurence morphisms can be non-injective, i.e.,
map a host graph element to more than one LHS element. Since arbitrary homomorphism
can result in unexpected matches, groups of elements on an LHS among which general
morphisms are allowed have to be explicitely specified. These groups are indicated by the
homomorphic clause.

The right-hand side describes how a matched witness graph is modified by the rule. To
connect LHS and RHS of a rule, we use a rule morphism to determine corresponding
elements on the LHS and RHS, indicated by binding variables. By using non-injective
rule morphisms, several LHS nodes can be merged into one, maintaining all edges that
originally connected to one of the LHS nodes.

In the usual interpretation, a production rule is understood as replacing the structure in
the host graph identified on the LHS with the structure found on the RHS, i.e., the host
graph is modified in-place: Elements appearing on the LHS but not on its RHS are deleted,
while elements on the RHS that have no corresponding element on the LHS are created.
Since we often want to simulate algebra operators that are free of side-effects, we would
have to repeat the elements of the LHS (i.e., the input for an operator) on the RHS, as the
input elements (e.g., relations) would otherwise be directly modified by the transformation.
This will not only lead to a lot of redundancy in rules, but also make specification of the
newly created elements on the RHS more difficult. To suit this special requirement, we
split the LHS elements into an in-place and a copy set. The in-place set has the usual
semantics and can be used to do modifications on the host graph. The copy set indicates
that corresponding elements on the RHS represent copies of this induced subgraph of the



witness graph. With the copy set, we can easily use host graph elements as templates
for new graph elements. Copied RHS elements refer to the template LHS element via a
morphism and can specify a new label. By connecting elements of the copy set to those
of the in-place set, we can indicate an embedding of created and copied elements into the
host graph.
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Figure 2: Overview of our graph transformation formalism

Application conditions are a generalization of various mechanisms found in other graph
transformation languages to restrict a rule’s applicability to those subgraphs of a host
graph that meet additional structural and non-structural restrictions. An AC is essentially
a boolean expression with the usual conjunction, disjunction, and negation junctors. Its
elements can be “flat” expressions on attributes of the elements identified on the LHS, as
well as graph patterns that must or must not appear together with a potential witness graph.
Morphisms are used to identify elements in these graphs with those on the LHS of a rule.

Beyond the basic elements for specifying production rules that GTA has in common with
many GTSs, different language extensions can increase the degree of expressive power
of individual rules, but not of the GTS as a whole. E.g., optional elements (indicated by
dashed lines) help to reduce the number of production rules required, as they allow to cap-
ture simple variants within a single rule. Multinodes on a LHS can match a set of nodes
in the host graph and are indicated by double lines. However, the match semantics of two
multinodes connected directly by an edge are not clear. One option is to prohibit edges
between multinodes, as done, e.g., by PROGRES [Zü96]. Instead, we use cardinality con-
straints on edges to indicate whether, e.g., each of the matches to the first multinode must
have exactly one corresponding match in the other multinode, or whether they have to be
fully connected. Another problem occuring when using multinodes is binding precedence.
Often a given host graph node can be mapped to more than one multinode in a rule. By
specifying priorities for multinodes, the assignment becomes unambiguous.

3.2 Operational Semantics of Graph Transformations

So far, we have only discussed the elements used to construct individual production rules.
Another important aspect of GTSs – and another aspect where they often differ consider-
ably – is their operational semantics, i.e., the sequence in which rules are applied.



The basic usage method for graph grammars is to apply the rules non-deterministically
and as long as possible until no more rules are applicable. Non-determinism is caused
by two aspects, (1) choosing the rule and (2) choosing a concrete LHS occurence (i.e.,
a witness graph or morphism). However, for most practical applications of graph trans-
formation systems, a way to enforce a strict or partial order in which rules are applied is
needed, as well as a way to restrict the possible occurences to certain parts of the graph.
While arbitrary control flows can be enforced by adding control flow elements to the host
graph, this results in a tight coupling of rule and host graphs and therefore prohibits reuse.
Approaches to structuring rule application go from a simple layering to full-fledged graph
programming languages.

Rules for managing data/metadata are rarely applied completely non-deterministically:
Since most of the operations on data/metadata graphs will only create new elements, a
rule would be applicable to the same occurence in the host graph again and again. ACs can
prohibit the rule if the new elements already exist. To express an actual use of an operator,
we need a mechanism to apply rules in a strict or partial ordering, and to narrow down or
determine where in a host graph they can be applied. E.g., to represent a more complex
operator, it could be desirable to split its description into a strict or partial sequence of rules
and connect them by passing the output of one rule as input to the next. On a coarser level,
i.e., to describe an entire transformation plan, different operators (which could themselves
be either atomic rules or a sequence of several rules) have to be connected in a similar
fashion. Both aspects are covered by morphisms: A morphism connecting elements of
a host graph with the pattern elements of a LHS pattern graph can be used to indicate
complete bindings of the rule (i.e., to enforce a certain witness graph) as well as partial
bindings to limit its applicability to parts of the host graph. Morphisms between one rule’s
RHS pattern elements and the LHS elements of another rule indicate both the sequence
in which they are applied, as well as bindings between rules that indicate how the results
of the first rule are to be used as input to the second. Together, production rules and their
operational semantics constitute GTA, our Graph Transformation Algebra for modifying
data and metadata represented using the PMA.

4 Types of Operations on Metadata and Data

Information integration deals with two general categories of operations on data/metadata:
Data management operations are those classical operations that form the parts of an inte-
gration plan, e.g., SQL queries, relational algebra operator plans, wrapper configurations,
stylesheets, etc. They focus on querying and modifying data and its associated metadata.
Model management operations subsume those steps that aid the creation of an integration
plan. We argue that our graph transformation approach is powerful enough to describe the
operational semantics of any existing data or model management language in one uniform
framework.

Existing data management languages are commonly mapped to or defined in terms of an
underlying algebra, or have a minimal subset of elements that can be interpreted as an
algebra. We will therefore use the terms algebra and language as synonyms.



The specific requirements of information integration have widened the scope and type of
data management operations: One deficit of both relational algebra and SQL is the lack
of operations to turn metadata into data or vice versa, i.e., to perform inter-layer trans-
formations. Such functionality is often required during integration to resolve problems of
schematic heterogeneity [BKLW99]. For example, a source table could model data cate-
gory information as attribute values, while the target schema requires this information to
be represented as individual columns. To resolve this, a pivot operation is needed, which is
not supported in SQL, making it an intra-layer language. SchemaSQL [LSS01] addresses
some of these problems by extending SQL, but lacks a proper theoretical foundation. FIRA
and FISQL [WR05] continue where SchemaSQL left off and provide a complete set of data
to metadata operators for RA and SQL, respectively, creating what the authors refer to as a
transformationally complete algebra. An algebra for a given data model has this property,
if it has the ability to transform arbitrary data into metadata, or vice versa. For the rela-
tional model, this requires to transform column and relation names to tuple values, or vice
versa. FIRA and FISQL can be classified as inter-layer languages for the relational and
SQL models, resp. For the XML metamodel, both XSLT and XQuery can be classified as
inter-layer languages as well.

Another common problem is not solved by inter-layer languages: Often, data coming from
sources of different data models has to be integrated, which requires a transformation of
data and metadata between data models. Most existing approaches use a variant of the
wrapper/mediator approach [Wie92]. A wrapper is a configurable software component
specific to an integration platform that translates from the source’s data model to the IDM
of the platform. Since the operations performed by a wrapper cannot be mapped to any
data-model-specific algebra, their effects cannot be described transparently in an integra-
tion plan, but only as a black box with their configuration parameters. For some types of
mappings between data models, declarative languages have been proposed, often coming
as an extension to an existing language. The most prominent example is SQL/XML, which
allows to create XML fragments from SQL data. Together, these languages and wrappers
represent inter-metamodel data management operations.

In section 5, we will illustrate how the operational semantics of individual data manage-
ment operations can be represented by using GTA production rules, and how we can use
this representation in conjunction with the rule chaining mechanism introduced in sec-
tion 3.2 to describe sequences of these operators, i.e., abstract transformation plans.

Recently, the area of model management, introduced by the work of Bernstein, Melnik
et al. [MRB03a, MRB03b], has received increasing recognition. [MRB03b] defines logi-
cal operators (i.e., an algebra) that work on models or schemas. Besides precisely defined
concrete operators like the merging of models, or the deletion or extraction of parts of
a model, some abstract operators stand for a number of alternative realizations. For ex-
ample, Match is an abstract operator representing different schema matching heuristics to
discover semantic correspondencies. Our graph transformation formalism is able to rep-
resent both concrete operations and specific realizations of abstract operators. Schema
matching is an additional example of how model management can benefit from the PMA’s
ability to generically represent data (either completely or aggregated): Many instance-
based approaches to schema matching use statistical information on the distribution of



data values. The PMA allows instance-based matching to be done independently of the
concrete implementation and metamodel of the data sources to be matched.

Going beyond the existing model management operations that can support the manual cre-
ation of integration plans, our pattern-based approach to information integration presented
in [Gö05a] aims at the automated creation of integration plans. It makes intensive use of
graph transformations to represent both patterns and the resulting integration plans. Pat-
terns are a machine-understandable, reusable representations of information integration
problems and of knowledge on how to recognize and resolve them.

5 Graph Transformations for Generic Data Management

We will now demonstrate the use of GTA with a small example scenario. We will use
GTA to describe (sequences of) production rules that represent operators and sequences of
these operators, i.e., transformation plans. Figure 3 shows the schema and data of a small
human resources database HR, with tables for employees and departments. Consider an
application that needs an integrated relational view on this data source and has some spe-
cific requirements regarding its schema: The information about an employee’s department
should be combined into a single table row with his or her other data. The combined
employee-department information should then be divided into individual tables for each
city that is the location of a department. As departments open, close or are relocated, this
information can change at any time, so the number of resulting tables is not predetermined.

The denormalization could be done with a simple join. The partitioning of the table, in
order to be independent of the actual values for city found in the database, can be expressed
with the FIRA partition operator ℘.
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Figure 3: The human resource database represented using the PMA



5.1 Simulating a Basic Data Modeling Operation

This simple example shows that even though information integration has to deal with op-
erations that go beyond the capabilities of basic data modeling languages, they are still
the mainstay of many integration tasks. Usually, a considerable part of an integration plan
will likely be modeled in a single data model and will only require basic functionality, like
that provided by SQL. The left of Figure 4 shows how the relational join operator (the
generalized θ -join) can be represented using the GTA. The operator is split into two pro-
duction rules, one for the schema and one for the data part. On the LHS, the Join Schema
rule selects several elements out of the host graph: two tables t1 and t2 with multinodes
for all their respective columns c1 and c2, the data types of the columns ty1 and ty2, and
the (shared) schema the two tables reside in. Note that a homomorphic group is declared
for the tables (to allow self-joins) and for the column types (to allow several columns to
have the same type). The column sets c1 and c2 and table t1 are chosen for copying,
while the other elements are used in-place on the RHS. A copy of t1 labeled tn is created,
which is attached to the same schema to which t1 and t2 already belong. tn’s name is set
to the concatenation of the names of t1 and t2. All columns of t1 and t2 are copied and
attached to the new table. The copied columns are connected to the same type nodes as
their respective template.

The LHS of the rule handling the data part of our join (Join Data) selects pairs of instances
of the tables t1 and t2 (i.e., the tuples), together with instances of their respective columns
(i.e., the tuples’ attributes). Note that the only binding between the two rules is actually
the type test of the LHS and the type assignments of the RHS. Copies of the instances
of columns are attached to a new instance for the new table tn (i.e., a tuple of tn). The
application condition consists of a placeholder which is bound to a boolean expression
that represents the join condition parameter, so that only those pairs of tuples (tu1, tu2)
that fulfill the join condition result in the creation of a tn tuple for the result table.
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Figure 4: The θ -join (t1./joinCondt2) and partition (℘pCol) operators



Using morphisms between the LHS of operator rules and the host graph, and between the
rules and the graph representing the join condition expression, we can now parametrize the
GTA join operator to use it on the emp and dept tables (emp ./emp.deptno=dept.deptno dept)
of the HR database of Figure 3. Variable t1 is bound to the emp table, t2 to dept, s to
the HR schema node. The join condition, given as an expression graph, is bound to the
application condition of the Join Data rule. This binding describes the first operator of our
abstract integration plan shown in Figure 5.
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Figure 5: The abstract integration plan represented as chained graph transformations

5.2 Translating Data to Metadata

FIRA [WR05] defines operations that can translate data to metadata and vice versa. The
partition operator ℘pColR partitions an input relation R into newly created output relations
based on the values contained in a column pCol given as parameter. Partitioning is gener-
ally used on categorical attributes, which have few distinct values when compared to the
cardinality of the input relation. In our example HR database, we use the partition operator
℘Cityempdept to split the result of the previous join, the empdept table, into separate tables
depending on department’s location. Its graph transformation representation is shown on
the right in Figure 4. The operator is again split into a schema and a data rule. For each
value of the partition column pCol, we create a new table that contains identical columns as
the input relation, except for the partitioning column. Its respective value is used to define
the name of the resulting table. As this rule would create a new table for each occurence
of the value (not for each distinct value) we define a NAC stating that a table based on this
value must not already exist in the schema. The data part of the operator takes instances of
the input relation (tuples and their attributes) and creates an instance of the specific output
relation that corresponds to the input tuple’s value in the partition column.

We bind the GTA partition operator to the table node that represents the result table
empdept of the previous join operation. To parametrize the operator, the pCol pattern



node is bound to the city column node of the same table. This binding gives us the second
operator of our abstract integration plan in Figure 5.

6 Deployment of Mappings

An abstract representation for integration plans such as the one described above is a valu-
able tool: It allows us not only to describe integration plans in a way that is independent
of a specific platform. Even more important, we can now express integration plans that
require functionality going beyond that of a single platform (and thus also beyond the
expressiveness of a single operator language), i.e., plans that would otherwise require a
combination of languages and integration platforms. But with the graph transformation
formalism, we not only have described an abstract operator algebra, but also a directly ex-
ecutable specification for a generic graph transformation system. While such a system is
certainly useful for the creation and testing of mappings or the development of new opera-
tors, such a generic system could never be as efficient or be optimized to the same degree
as the mature, but specialized existing information systems.

Therefore, once the tasks that benefit from a generic representation have been accom-
plished, e.g., the integration plan has been created, their results represented in the generic
representation should be deployed to a suitable platform or a federation of platforms, if no
single platform offers the full expressive power that would be needed. This is analogous to
the idea of the Model Driven Architecture (MDA) [OMG03b]: GTA represents a domain-
specific language for the domain of data and metadata management. A generic transfor-
mation plan described with GTA represents a platform-independent transformation model
(PIM), which is then transformed into a platform-specific transformation model (PSM).
Since we already have a graph representation for graph transformations and their combi-
nation, it is natural to integrate the deployment task into the overall PMA framework: For
each concrete integration platform, a metamodel that represents its respective native trans-
formation language is defined. Instances of this model represent concrete transformation
sequences. For example, a metamodel for relational algebra would have a node type for
each of the operators, with attributes representing parameters and edges indicating how the
results of one operator are input for the next. To deploy an abstract plan to the specific rep-
resentation, we can again use graph transformations to define a deployment specification,
i.e., the mapping from abstract to concrete operators. A deployment rule’s LHS refers to
operators and morphisms of the abstract GTA representation, and on its RHS creates one
or more appropriately configured platform-specific operators.

7 Related Work

As motivated in section 2.2, existing metamodeling approaches like the CWM [OMG03a],
the Graph Exchange Language [HSSW06] and the Resource Description Framework RDF
[MM04], have deficits when it comes to the efficient representation and handling of data,



which are corrected by the Paladin Metamodeling Architecture (PMA). Existing data and
metadata management formalisms and systems that go beyond the expressiveness of es-
tablished query languages, e.g., the FIRA/FISQL languages [WR05], or the Rondo model
management framework [MRB03a, MRB03b] all focus only on supporting specific as-
pects of the general data/metadata management problem. To the best of our knowledge,
our approach is the first to subsume the expressiveness of all these approaches.

A fundamental concept of the Model Driven Architecture [OMG03b] is the transformation
of platform-independent models (PIM) of application logic to platform-specific models
(PSM). This is comparable to our concept for deploying generic mappings to concrete
runtime platforms. A number of approaches considers the use of graph transformations to
perform these model-to-model transformations (e.g., [GLR+02]). However, none of these
approaches includes the modeling or transformation of data.

8 Conclusion and Outlook

We motivated how the area of data/metadata management in general, and information in-
tegration in particular, could benefit from a generic formalism for describing all possible
operations on data and metadata. We introduced a generic data/metadata representation
using an attributed, typed graph model. We defined a graph transformation formalism that
allows us to define arbitrary operations on this representation in a natural way. We illus-
trated how this formalism can be used to represent data of existing data models and to
mimic existing operations of the data model. We further motivated how the graph trans-
formation formalism can also be used to specify transformations of transformation plans,
e.g., to map the platform-independent transformation plans to platform-specific plans dur-
ing deployment.

The power of our formalism can be used to perform a number of other data/metadata
management tasks that we have yet to explore in more detail. For example, graph transfor-
mations can describe algebraic rewriting rules to optimize both abstract and the concrete
transformation plans, structural schema matching approaches, or metadata management
operations. While our current graph transformation formalism and its concrete syntax
have shown to have adequate expressiveness, they need further streamlining to ease the
specification of operators. At the same time, the amount of commonalities between differ-
ent concrete metamodels that are captured by the core metamodel has to be increased, to
enable the specification of more generic, metamodel-independent operators.

While our formalism is primarily intended as a theoretical framework, a reference platform
for further refinement, like the refactoring of metamodels and developing operators, is
needed. Existing graph transformation systems have proven to be inadequate for mapping
some of the advanced constructs of our language and its copy semantics to their respective
language concepts. Therefore, a prototype graph transformation system custom-tailored
to our requirements is under development in our group.

Some open questions regarding the deployment process have still to be answered: The flex-
ibility of GTA leaves many equivalent options to specify the same operator. This makes



their identification during deployment difficult. Besides the obvious solution of establish-
ing standard representations for operators, one possibility we are looking into is to define
a canonical form for graph transformations.
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