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Abstract

The convenient availability of information is an essen-
tial factor in science and business. While internet technol-
ogy has made large amounts of data available to the gen-
eral public, the data is largely provided in human-readable
format only. New technologies are now making direct ac-
cess to millions of structured or semi-structured databases
possible, but only through integration of these data sources
maximum benefit can be gained. Traditional approaches
to information integration, which involve human develop-
ment teams and work in a controlled environment with
a stable set of data sources, are not applicable due to
the dynamic nature of such an environment. Therefore a
higher degree of automation of this process is required. We
present the PALADIN project (Pattern-based Architecture
for LArge-scale Dynamic INformation integration), that
uses machine-understandable patterns to capture and ap-
ply expert experience in the integration planning process.

1. Introduction

Information integration technology is already applied
successfully to consolidate the IT infrastructure within
many organisations. It provides tools to bridge the di-
verse forms of heterogeneity encountered between the sys-
tems deemed for integration, like different hardware plat-
forms, operating systems, programming languages, and
APIs (technical heterogeneity) as well as diverging data
models and structuring of the data sources (logical hetero-
geneity). Planning and setting up an integration system is,
however, to a large part still a manual process: It encom-
passes determining the data sources of interest that can con-
tribute to the final system and the analysis of their schemas
and technical properties. In a next step, correspondencies
between the data sources are identified and mappings from
the source data models and structures to those of the de-
sired integration system are developed. This mapping is
then used to set up the chosen runtime platform for the inte-
gration system. Since this process relies on human experts,
it is both time-consuming and costly. Still it is adequate for
many of the current intra-organisational scenarios, which

are characterised by a limited and well-known set of source
systems. These sources are usually under a single adminis-
trative control and have therefore only restricted autonomy.

New, still evolving forms of inter-organisational co-
operation, however, are often more short-term in nature and
require a more ad-hoc kind of integration: Foster et al. [7]
describe virtual organisations (VOs), which aim at sharing
computing resources like CPU cycles and main memory for
a common goal. They describe the concept of grid comput-
ing, which was born out of this idea. A grid makes the
heterogeneous distributed systems, which supply these re-
sources, available over a network in a manner transparent
for users and application programmers. Our work concen-
trates on information integration in data grids. This term
originally stood for purely file-based grids, which were
used to transfer input data and executables to the grid nodes
in a computing grid and were later extended to provide dis-
tributed storage space for large amounts of raw scientific
data. We refer to them as storage grids, to distinguish them
from the true data or information grids where not CPUs
or flat persistent storage space, but data from structured or
semi-structured data sources is considered the resource to
share. These scenarios are characterised by a large, ever
changing set of autonomous data sources. Only the proper
integration of these sources will make their use beneficial.
However, their dynamic nature makes the traditional, man-
ual integration methods unsuitable, as they rely on human
developers and are therefore too slow and too expensive
for ubiquitous deployment. Consider a virtual organisation
that uses data found on the grid. As the data sources are
provided by different organisations like companies or re-
search institutes and are distributed globally, it is likely that
sources become temporarily or permanently unavailable,
while at the same time new sources have to be included. A
conventional approach would obviously not be able to react
timely to such changes. An integration planning system is
required that can create a mapping of the data sources into
the desired target schema with as little human interaction
as possible.

The PALADIN project aims at reducing the amount of
human expertise needed in setting up an integration system,
enabling the use of integration technology in these dynamic



scenarios. While application domain experts are unlikely to
be replaced even in the long term, we substitute the human
information integration expert in those scenarios, where the
application of integration technology has been impractical
to date. We accomplish this by conveying expert knowl-
edge in a machine-processable format, as integration pat-
terns. A pattern basically consists of the description of a
recurring atomic or larger-scale integration problem and
directions on how to solve it. A pattern does not provide
a specific solution to a specific problem. Instead, it sup-
plies a generic description of the general problem situation
to which it is applicable and a generic guideline for an ap-
propriate solution that has to be adopted to the peculiarities
of the concrete problem. For example, a pattern might de-
scribe how to map an SQL type into an appropriate XML
Schema type or how to restructure a set of tables into a sin-
gle table, if the desired target schema is denormalised.

PALADIN patterns work on a data model that describes
source and target schemas and their data as attributed, typed
multigraphs. The patterns consist of production rules that
describe the transformation of a subgraph of schema ele-
ments and the respective transformation of the data held
within these elements. Essentially, the source schema
graphs have to be understood as a set of axioms, while the
target schema is a hypothesis. The patterns form a kind of
deduction rules. Integration planning can now be seen as
the problem of proving the hypothesis, based on the axioms
and using the deduction rules. If a sufficiently exhaustive
library of patterns is provided, their repeated application
will yield a successful deduction. This deduction can then
be used as an integration plan by concatenating the opera-
tions on the data described by the patterns, resulting in what
is essentially a tree of logical operators. This operator tree
can then be mapped to the physical operators of a suitable
runtime environment.

Unlike other attempts on automated information integra-
tion, PALADIN’s set of available patterns is easily exten-
sible via the declarative pattern language it provides. The
description of patterns as graph transformations enables an
expressiveness that goes far beyond the operator algebras
of common data models and query languages. Where the
additional expressiveness is not required, high-level lan-
guages can be used to describe the operation and then be
compiled into the internal representation.

While our focus is on the planning phase, PALADIN
also aims at supporting an increased degree of automa-
tion for the other essential steps of information integration,
like the specification of the requirements (i.e., the target
schema), the discovery of adequate data sources and the
deployment of the integration plan into a runtime environ-
ment.

The remainder of this paper is structured as follows:
Section 2 continues with a description of related work. Sec-

tion 3 gives an overview of the PALADIN integration pro-
cess and briefly describes the PALADIN metamodel that
is used to convey metadata and data. Section 4 elaborates
on the concept of integration patterns. Section 5 concludes
with a summary and a perspective on remaining problems
and future work.

2. Related Work

The grid and web services communities are both work-
ing on a standardisation of protocols and formats that solve
many aspects of technical heterogeneity. The emerging
web services technology [1] provides methods and lan-
guages to define and use platform, operating system, and
programming language independent interfaces to services
available over networks. Web services themselves serve
as a vantage point for the efforts of the Global Grid Fo-
rum, which use their facilities to standardise interfaces for
all services required in a grid. The Data Access and In-
tegration Working group is defining Grid Data Service in-
terfaces for accessing data and metadata of structured and
semi-structured data sources [3]. These approaches, how-
ever, only tackle issues of technical heterogeneity, but offer
nothing to resolve the diverse forms of logical heterogene-
ity found between different data sources. Still they will
eventually yield standard interfaces for data source access
that can be used by PALADIN.

Inspired by the precise classification of the different
forms of heterogeneity encountered in information inte-
gration defined by Busse et al [6], we divide logical
heterogeneity, whose resolution is the primary focus of
PALADIN, into three forms: Data model heterogeneity
subsumes fundamental differences in the data model used
to describe the data source schemas like the differences be-
tween the relational world of SQL, the hierarchical nature
of XML, or the nets of interwoven objects in the object-
oriented paradigm, as well as the subtle differences be-
tween different implementations of the same data model.
Schematic heterogeneity describes scenarios where iden-
tical domain concepts are modelled using the same data
model, but different data model elements. Even if two data
sources agree on a common data model and represent the
domain using identical data model concepts, these identical
schema elements can still be used differently, a situation
which is referred to as structural heterogeneity. A well-
known example is a varying degree of normalisation.

These forms of heterogeneity have been subject of di-
verse research projects. Numerous mappings between dif-
ferent data models, with a strong emphasis on translating
between XML and the relational world, have been defined
(e.g. [10]). These mappings, however, are commonly de-
fined imperatively as algorithms, which limits their ability
to handle more complex situations. They often yield unnat-



ural mappings that are not a good starting point for further
integration planning. Instead of supplying a set of mapping
algorithms that can only be applied as a whole, we will
use our pattern concept to describe and reuse atomic data
model mapping operations that can be used and combined
with respect to the semantics of each data source schema.

The problem of schematic heterogeneity has been iden-
tified by [9]. The authors define SchemaSQL, a language
that extends standard SQL with capabilities to transform
data to meta-data and vice versa. Their approach, however,
is limited to the relational context, and they do not aim at
using it in automated schema integration.

Sauter et al. [8] describe BRIITY, a language and system
to define mappings between differently structured database
schemas. They put considerable effort in the definition
of updatable mappings. As their understanding of struc-
tural heterogeneity includes data model heterogeneity, they
also describe mapping between the relational and an object-
oriented data model. While they list a large number of com-
mon structural problems and exemplarily show how to map
them using the BRIITY language, they do not create these
mappings with automated support.

SchemaSQL and BRIITY can serve as an inspiration
for a high-level language to allow an easier description of
schematic and structural patterns. BRIITY’s large number
of samples are essentially exemplified patterns, which we
plan to reuse by describing them in a generic way.

While, due to the limitations of standard SQL, structural
and schematic heterogeneity is a considerable problem in
relational systems, emerging query languages for XML [4]
are generally sufficiently expressive to describe most pat-
terns in the XML data model.

To successfully discover a mapping between different
schemas, the inherent semantic heterogeneity among them
has to be identified. It results from the use of different
terms for identical concepts (synonyms), broader or nar-
rower terms (hyper- or hyponyms) or identical terms that
have different meaning depending on domain and context
(homonyms). As true machine-understandable semantics
are out of reach at the current state-of-the-art in artifical in-
telligence, we will use schema matching techniques (see
[13] for an overview) that identify correspondencies be-
tween the schema elements. Existing techniques usually
operate on identifiers and structure of schema elements.
Approaches to automated schema matching like Cupid [11]
show promising results. These systems, however, are usu-
ally so-called hybrid schema matchers, i.e. they implement
a limited range of different techniques and provide it as a
monolithic component. Our framework instead encapsu-
lates these individual techniques as atomic operators that
can be independently implemented and chained together
via standard interfaces. This allows the reuse of common
techniques and algorithms and gives way to an empirical

analysis of new matching methods and the best way to com-
bine them. Matching operators include preprocessing steps
(e.g. stemming of schema identifiers, synonym lookup in
dictionaries etc.) and different matching strategies as well
as methods to combine their results via composite match-
ers. However, the quality of the resulting correspondencies
or matches is generally insufficient to serve as a reliable ba-
sis for integration. We therefore explicitly include the user
in the schema matching process, allowing him to inspect,
correct and amend the results of the matching process if
desired.

Existing integration tools like IBM’s Information Inte-
grator [5] provide access to different data sources using
wrapper technology and use SQL views to transform and
integrate schemas. While limited to SQL operations, they
can still be used as a runtime environment for PALADIN-
generated integation plans, where their expressiveness is
sufficient.

3. Architecture and infrastructure

In this section, we present the essential elements of the
PALADIN architecture and describe the PALADIN meta-
model (PMM).

3.1. Conceptual Architecture

The PALADIN architecture is presented in figure 1.
The desired target schema and the schemas of the data
sources, both represented in their respective native for-
mats (e.g. SQL DDL, DTD, XML-Schema etc.), are first
converted into a PMM representation. These (still un-
connected) schemas are then matched semi-automatically
using the PALADIN schema matching framework. The
matched schemas are the vantage point for the actual in-
tegration planning, which uses integration patterns to iden-
tify a sequence of logical operations that transform the in-
stances of the source schemas into instances of the desired
integrated target schema. The details of this planning pro-
cess will be presented in section 4.

The resulting logical operator tree will not be used di-
rectly. Instead it serves as a high-level, logical representa-
tion that can be translated into physical plans for concrete
runtime environments, which can be chosen by the user or
determined by other constraints. The potential spectrum
of runtime environments ranges from existing integration
tools over a purpose-built PALADIN runtime environment
to a distributed integration architecture, where the individ-
ual operators are available as web or grid services, con-
nected or choreographed using a web service flow language
like BPEL [2]. With our focus on the planning phase, the
necessary tooling and rules for physical plan generation
and deployment are future work.
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Figure 1. PALADIN conceptual Architecture

3.2. Metamodel

An essential component of the PALADIN infrastructure
is a metamodel that is able to hold all schema and match-
ing information throughout the planning process. Schemas
of different data models are usually described using their
own native (usually textual) representation, like SQL’s Data
Definition Language or one of the many XML schema lan-
guages. These specialised notations have to be replaced by
a unified metamodel that recognises their respective spe-
cial features, but also captures common properties of ele-
ments of the same or different data models. The Common
Warehouse Metamodel (CWM) [12] provides such a uni-
fied metamodel. It uses the Meta Object Facility (MOF)
to define metamodels for SQL, XML, the object model
and many others. However, the CWM does not satisfy
all our requirements on a metamodel. A general prob-
lem for practical use is the inherent complexity and fine
granularity of the full CWM specification. Additionally,
some of the predefined metamodels do not provide suffi-
cient expressiveness. The CWM XML metamodel, for ex-
ample, is based on Document Type Definitions (DTDs) and
does not support many of the advanced constructs offered
by XML Schema. The most severe limitation of CWM
is, however, the data layer, which we need for instance-
based schema matching and for defining how patterns han-
dle data. Although CWM allows instance handling, it does
so by providing an instance metamodel, i.e. the actual in-
stances themselves are located on the model layer, together
with the models they instantiate. This does not only violate
CWM’s own fundamental concept (where every object on
layer Mi is an instance of an object on layer Mi+1), but

makes handling of instances extremely cumbersome and
therefore unsuitable for describing a pattern’s operational
effects on the data.

Based on CWM, we define a simplified PALADIN
metamodel (PMM), which fulfills our requirements and
at the same time retains general compatibility to CWM
models by borrowing CWM’s concept of four meta layers,
namely data (M0), model (M1), metamodel (M2) and meta-
metamodel (M3), as well as the separation into different
packages for each supported metamodel. We provide an
XML metamodel that supports XML Schema. The main
extension is, however, a conceptionally valid data layer
(M0), where every data element is a true instance of the
respective element of the schema.

Figure 2 gives a brief overview of the central parts of
PMM and its four meta layers and shows a subset of the
model elements. Note that the figure omits most attributes
for simplicity. We have also changed the way cardinality
constraints are represented from the UML to the Entity-
Relationship style, which allows us to naturally represent
them in n-ary associations where n > 2. Elements on one
layer are used as classes on the layer below and are them-
selves instances of the classes on the layer above.

The top layer (M3) of PALADIN’s metamodel provides
the elements that are used to describe the different meta-
models. It is self-describing (i.e. it can be described us-
ing its own elements) and enables the definition of arbi-
trary metamodels, therefore permitting the addition of new
metamodels without hard-coding their semantics. All M3
elements are derived from a common superclass. The main
elements are Class and the Associations between classes.
Associations are n-ary, i.e. they can connect an arbitrary
number of classes, which requires the explicit modeling of
AssociationEnds to support rolenames and cardinality con-
straints. Both Classes and Associations can carry unstruc-
tured attributes that are typed using a subset of the built-in
simple types provided by XML Schema.

On the metamodel (M2) layer, we provide classes that
represent the elements of the data models we wish to sup-
port in our system. The M2 classes are separated into pack-
ages. The core package provides common functionality,
which is utilised in the other metamodel packages by ex-
tending the core classes. With the specialised classes of
the different data models like XML and SQL represented
as subclasses of the core, we gain a natural mechanism for
their integrated and uniform handling during the integra-
tion process. For example, a central element of the SQL
package is the Table class, which conceptually shares many
properties with the ComplexType class of the XML pack-
age. By letting both classes inherit from the abstract core
class Classifier, we can handle them uniformly where their
special properties are of no concern, e.g. during schema
matching, which is usually based on the labels alone. To
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Figure 2. Simplified overview of the PALADIN metamodel (PMM)

capture the results of the schema matching process, we pro-
vide a dedicated match metamodel that provides classes
and associations whose instances can describe correspon-
dencies both between elements in the same schema and be-
tween different schemas, which can be based on identical
or different data models. Inheriting from the basic Match
class, we discern matches on an abstract level by arity,
i.e. matches between individual elements, matches between
a set and an individual element and matches between sets.
These generic matches are subclassed by specific types of
matches that carry semantics, like subclass-relationships,
complete and incomplete unions, etc.

The model or metadata layer contains the instances that
represent concrete schemas, shown exemplarily in figure 2.
Unlike CWM, we explicitly include the data layer, which
allows the representation of data with the means of our
metamodel, therefore avoiding a technological gap that
would otherwise result by using data source and data model
specific interfaces. We require handling of data for two
purposes: Instance-based schema matching, which actu-
ally looks into the data to determine correspondencies, can
often improve the quality of the purely schema-based ap-
proaches and validate their results. We also need a way
to define how patterns handle data, i.e. their operational
semantics, which is described in detail in section 4. The
M0 layer is not intended to completely materialise a data
source, but instead to provide data on demand, e.g. by
wrapping a source specific interface. Consistent with the
concept of different meta layers, each data element is rep-
resented as an instance of its model element. For example,

a relational tuple is an instance of a table and is composed
of attributes, which are themselves instances of the table’s
columns. The values are represented using special literal
nodes, which use the aforementioned built-in types.

4. Integration Patterns

The central concept that distinguishes our approach
from others is the idea that we do not simulate an informa-
tion integration expert’s work by providing algorithms that
perform the necessary mappings and transformations, as
they usually suffer from a lack of extensibility and realise
only a limited set of standard solutions. Instead, we use
graph transformations to specify machine-understandable
integration patterns that allow the description of the iso-
lated integration problem and its solution in a declarative
way. This approach also makes expansion of the set of pat-
terns possible without programming effort.

Each pattern contains a description of the changes on the
schemas that result from its application, as well as how it
is applied operationally, i.e. how it transforms the data. In
essence, each pattern therefore describes a specialised op-
erator. By defining the operator’s effects as a graph trans-
formation on a graph model that can handle arbitrary data
models and their respective data, we gain an enormous
amount of flexibility: We are not limited to the operators
provided by existing algebras, which usually work only
within a single data model and often cannot bridge the gap
between data and metadata, i.e. handle schematic hetero-
geneity.



If the set of patterns is sufficiently large, an appropri-
ate chaining of the patterns can yield a non-trivial transfor-
mation from a set of source schemas to the desired target
schema. This tree of operators is essentially a query plan
that defines the target schema as a view on the data sources.
Like a common view definition, it is prefixed to the plan of
every query on the target schema at runtime.

4.1. Graph Transformations

Graph transformation is a well-established concept. A
graph transformation system operates on a graph-oriented
data model, on which transformations are described as pro-
ductions or rules. Many formalisms or languages for rule
definitions exist. We chose a language loosely based on
the PROGRES approach [15]. PROGRES uses a hybrid vi-
sual language, consisting of a mixture of graphical and tex-
tual elements. This allows both an easily comprehensible
graphical representation of the essential aspects of every
rule (having, of course, precisely defined semantics as well
as a textual representation) and at the same time the expres-
sion of complex pre- and postconditions and transformation
operations, which would be hard to capture graphically, by
resorting to the textual elements of the notation. The graph-
ical notation is essentially an alternative to path expressions
on the associations between the nodes. Paths allow the def-
inition of node sets and are the basic method for the defi-
nition of integrity constraints and production rules. Schürr
[14] describes the theoretical foundations of this transfor-
mation language using predicate calculus.

The main components of a production are left- and right-
hand side (LHS and RHS) graph patterns. Node sets are
used on the left-hand side to select the subgraph which is
subject to a transformation. The right-hand side shows the
resulting subgraph when applying the production. Binding
variables are used as identifiers to bind nodes on the LHS
to nodes on the RHS. A bound LHS node that does not
appear on the RHS is deleted. A RHS node without a cor-
responding LHS node signals the creation of a new node.
A LHS node with a bound RHS node is preserved on the
RHS, together with all attributes and context edges that are
not explicitly manipulated on the RHS.

Figure 3 shows a simple production rule using only
PROGRES’s graphical notation to introduce these basic el-
ements. The LHS defines a mandatory node of type B,
which is connected to a mandatory set of nodes of type
A via a y edge. Both are preserved by binding them to the
variables i2 and i1, respectively, and repeating them on the
RHS. The optional set of type C nodes is given a binding
variable but is not repeated on the RHS, indicating a dele-
tion of these nodes if any exist. The crossed out node of
type D is a negative node, i.e. for the pattern to be applica-
ble, no nodes of type D must be connected to the B node via

i3:C

i2:Bi1:A

::=x

:D

z

y
i2:Bi1:A

x

:E

y

LHS RHS

Figure 3. A production rule

an edge of type x. The node of type E has no counterpart
on the LHS and indicates the creation of a new node.

4.2. Representing Integration Patterns as Graph
Transformations

When imported from the native format into a PMM rep-
resentation, the source and target schemas are represented
as objects and associations on the model layer. This rep-
resentation is essentially an attributed, typed multigraph,
with objects and associations of the respective metamodel
forming the nodes and edges of the graph. Initially, the
graphs of the individual schemas are unconnected. Schema
matching connects them using objects and associations of
the Match metamodel.

The objective is to find a sequence of production rules
that transform those parts of the source schema graphs that
correspond to elements of the target schema into the target
schema structure and, of course, to determine correspond-
ing transformations for the schema instances (i.e. the data).
A pattern describes an elementary or complex graph trans-
formation, both on the model layer M1 (i.e. the schema con-
stellation before and after applying the pattern) as well as
on the data layer M0 (i.e. the operation required to trans-
form the data within the transformed part of the schema).
While the transformations on the model layer are used to
guide the planning process, their corresponding operations
on the data layer describe the operations for the runtime
phase, i.e. the deployment of the plan. As an alternative to
using a graph transformation on the data layer to describe
the operations required for a pattern, it is often possible to
use existing operators of an algebra for the respective data
model (e.g. relational algebra or one of several XQuery al-
gebras). Naturally, these algebras are limited to operations
within their respective datamodel. They also often do not
offer much with respect to schematic transformations (e.g.
turning tables into attributes). For these cases, the graph-
oriented description offers the possibility to describe a pat-
tern’s operational semantics without the need to actually
define and implement an operator. This description can
then be executed by a generic graph-based operator. Fig-
ures 4a–d show four sample patterns dealing with different
forms of logical heterogeneity. Note that some details like
identifier mapping and the resolution of naming conflicts
are omitted for clarity.
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foreach $a in A {
let B = B + A.parent.class.label + ": " + A;
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}

fc:fi.first.type
label=f.label

1:fi 1:c1B 1:fc

owner cta:Attribute

Pattern xmlCTToRelationalST().m1 { 

ct:ComplexType ::=

}
Pattern xmlCTToRelationalST().m0 { 

e:Element

cts:Element

as:AbstractSet
contains

type

:Element

:SimpleType

type

contains

:ComplexType
type

:AbstractSet

a1:ctae1:ee1:ese1:cts ::=A B

contains

owner

owner

ct(b):ComplexTypects(b):Element

as:AbstractSet
contains

cta(b):Attributecta(a):Column
owner

m1:Equivalent
cts(a):Column

owner(2)e:Table
type owner(1)

ct(b):StructuredType
m2:Equivalent

}

owner(2)

a1:cta(a)e1:ee1:ese1:cts(a)A B

(a) From XML elements to typed tables

(b) Denormalising a relational schema

(c) From typed to flat tables

(d) Concatenating Features

Figure 4. Example patterns

The data model pattern shown in figure 4a describes how
to map an XML element based on a complex type, which
may contain any number of attributes and any number of
subelements of a simple type, but no complex subelements,
to an SQL table based on a structured type, by creating a
column out of every attribute and simple subelement. No-
tice that the XML complex type is preserved (as it might
still be referenced by other elements) and how the pat-
tern adds match information as annotations to the resulting
schema. The pattern does not handle the mapping of the
XML simple types to equivalent SQL types, as type con-
versions are needed in many other constellations and are
therefore delegated to dedicated patterns.

The structural pattern of figure 4b maps two tables on
the LHS that are connected via a reference (which can be

a simple reference match, a foreign key etc.), to a single
table on the RHS, i.e. it denormalises the two relations by
joining them. Notice the diamonds on the RHS which in-
dicate that all inbound edges of the deleted LHS elements
t1, t2 and t2rc are redirected to the new table t3 and to the
t1rc columns, respectively. The M0 facet uses a condition
to express the equi-join. A second structural pattern in fig-
ure 4c shows how to change a typed table without nested
complex types into an untyped one. The structured type is
preserved, its columns are cloned for the new flat table.

Another common problem is handled by the pattern de-
picted in figure 4d: Two or more features (i.e. columns,
XML attributes etc.) correspond to a single feature in the
target schema. The pattern resolves this problem by con-
catenating the features’ values.
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(a) Sample source and target schemas with identified matches (b) Replacing the XML element with a typed table

(c) Concatenating simple features (d) Flattening the typed vehicle table

(e) Denormalisation by joining the two source tables (f) Final schema after some cleanup
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Figure 5. Application of Integration Patterns

4.3. Applying Patterns

Using the patterns and the graph interpretation of mod-
els and data described in the previous section, we will now
illustrate the application of patterns on the source and target
schemas shown in figure 5a. An XML schema stores vehi-
cle types in elements based on an XML complex type. A re-
lation holds information about vehicle owners, i.e. the type
ID and license plate of each vehicle they own. The user,
however, is interested in a target schema consisting of a sin-
gle table which lists vehicle owners with license plate and a
description of their vehicles. Schema matching has already
identified (perhaps with the help of the end user) correspon-
dencies among the elements of the schemas. The typeid of
the XML complex type is referenced by the vehicle type
column of table ts. Other matches connect elements of the
source and target schemas. Several 1:1 correspondencies
exist, other attributes are in 1:n correspondency.

The schemas and the pattern applications are simplified
to be presentable. For brevity, we omit types that are han-
dled by the aforementioned type mapping patterns. Clean-

up and conflict resolution patterns will be used implicitly
on several occasions, like removing types that are no longer
needed, deleting colums not required for the target schema
(i.e. a projection operation) or renaming those schema el-
ements that are identified as equivalent to a target element
with a sufficient degree of confidence.

Our current pattern selection mechanism uses a simple
greedy approach, i.e. it will generally chose the pattern that
yields the maximum gain in similarity between the inter-
mediate schema resulting from its application and the target
schema. It will use backtracking if it reaches a dead end,
i.e. a situation where no pattern is applicable and the trans-
formation to the target schema is not complete. Similarity
is defined based on the matches between the source and tar-
get schemas. In general a One2OneMatch (cf. figure 2) is
preferable to a One2ManyMatch, which itself is better than
a Many2ManyMatch. By considering the concrete type of
match and by using the confidence in each match as modi-
fier, we calculate a similarity measure. Pattern application
stops when each target schema element is connected to a
target schema element via an Equals match.



To further optimise pattern matching, integration plan-
ning is split into phases, which reduces the set of patterns
that are tested. Initially, while elements of data models
other than the target model remain, data model patterns of
the proper type are prioritised. After all schema elements
have been transformed into the target data model, first
schematic and then structural patterns have precedence.

Of the set of patterns defined in figures 4a–d, sev-
eral are applicable in the initial state. Since one of the
source schemas is of a type different from that of the tar-
get schema, data model patterns receive higher priority.
Figure 5b shows the resulting schema after applying the
xmlCTToRelationalST pattern of figure 4a. The attributes
and subelements of the complex XML type are converted
into columns of a newly created SQL structured type.

The maximum increase in similarity between source and
target schemas is gained by unifying the 1:n matches be-
tween features. Therefore, the concatenateFeatures pattern
of figure 4d is applied twice, yielding the intermediate state
shown in figure 5c.

As the target table is untyped, the next step flattens the
typed vehicle table using the relationalSTtoFlatTable pat-
tern (figure 4c), which leads to the schema of figure 5d.

Since the user is interested in a detailed description of
the model for every owned vehicle, the two tables have to
be joined, i.e. denormalised with the denormalise pattern
introduced in figure 4b. The resulting schema in figure 5e
is already close to what the user specified.

After the application of some clean-up patterns, the
columns receive their proper names and the unneeded
vehicle type column is dropped. The result of these final
steps is shown in figure 5f: Equals matches between all
relevant schema elements indicate that planning has suc-
ceeded.

Figure 6 shows the resulting tree of operators, again
skipping several clean-up operations and leaving out op-
erator parametrisation. This logical representation of the
required mapping operations can then be mapped to a con-
crete set of physical operators that are available in the cho-
sen runtime environment. The resulting physical operator
tree is then deployed to the runtime environment.

4.4. Schema Matching using Patterns

We have demonstrated how patterns can be used to find
a sequence of operations that resolve data model, schematic
and structural heterogeneity, thereby integrating a set of
source schemas into a desired target schema. The princi-
pal idea of graph transformations can easily be extended
to help resolving semantic heterogeneity as well, i.e. for
schema matching. Even without extending the expressive-
ness of the pattern language, it is straightforward to define
a pattern that adds an equivalent match node between two

xmlCTTo
RelationalST

concatenate
Features

n:Namespace

s:SQLSchema
concatenate
Features

relationalST
toFlatTable

denormalise ts:SQLSchema

Figure 6. The resulting operator tree

schema element nodes with literally identical labels. Dic-
tionaries or thesauri can be supported by modelling them
as a schema, either using an existing or a dedicated meta-
model (like a simplified OO model with only generalisa-
tion/specialisation relationships) that captures the terms of
the respective domain and their relationships. This ref-
erence schema can then be used in patterns like the one
shown in figure 7. The reference schema t describes a sub-
class relationship between two terms, the pattern uses it to
add an appropriate match between two concrete schema el-
ements whose labels are identical to those of the thesaurus
terms.

Similar patterns can be constructed for dictionary and
acronym lookups. Complex preprocessing steps like stem-
ming algorithms for the node and edge labels, however,
have to be added as functions.

5. Conclusion and Future Work

We have motivated how new forms of cooperation based
on sharing structured data in an ad-hoc manner in data grids
require a new approach to information integration that re-
moves the overhead of a human-driven and costly integra-
tion process. Such an approach has to account for the di-
verse nature of these data sources and must therefore be
able to bridge many forms of logical heterogeneity, requir-
ing assistance only to solve application-domain-related am-
biguities during schema matching, which can easily be pro-
vided by the end-user. The creation of an integration plan,
i.e. a mapping from the sources to the target schema has to
be done by the system. PALADIN uses an extensible col-
lection of integration patterns, which describe both com-
mon and specialised problems encountered during the in-
tegration process, as well as their solution, essentially cap-
turing expertise in information integration in a machine-
processable way. The patterns are represented declaratively
as transformations on schema and data graphs, thus we
avoid hardcoding a fixed set of solutions and allow the sim-
ple expansion of the pattern base. The graph-based meta-
model these graph transformations operate on can itself be
expanded to embrace more metamodels by defining them
using a meta-metamodel. We have showcased, how graph
transformations can be used to describe the effects of a
pattern application on both the schemas and the data. We
can describe the semantics of arbitrary operations without
the need to provide a unified operator algebra, while at the
same time including existing operators where they are ap-



t2:Term

Pattern subclassMatching().m1 {
Condition me1.label=t1.label & me2.label=t2.label

t1:Term

me1:ME

t:Thesaurus
part_of

is_a ::=

p1:Package

}

me2:ME

p2:Package
part_of part_of

me1:me1.type

p1:p1.type

me2:me2.type

p2:p2.type

source

part_ofm:Is_A
targett2:Term

t1:Termt:Thesaurus
part_of

is_a part_of

Figure 7. A simple schema matching pattern

plicable to improve runtime efficiency. We then demon-
strated the validity of our approach by applying these pat-
terns to two simple source schemas, which were success-
fully mapped to the desired target schema.

To minimise user interaction during schema matching,
PALADIN goes beyond existing approaches to automatic
schema matching by using an extensible framework for
composite matchers. It is even possible to describe auto-
mated schema matching itself as a set of patterns, i.e. graph
transformations, requiring support by imperatively defined
(i.e. programmed) operations only for preprocessing steps
like tokenisation or stemming.

Our current work focuses on the mapping of our graph
transformation paradigm to existing transformation engines
like PROGRES. Due to the limitations of these engines,
we also pursue the development of a transformation engine
specialised for schema and data graph transformations, to
allow a better evaluation of approaches and heuristics for
selecting the optimal pattern for a given situation.

While we concentrate on the creation of the logical inte-
gration plans starting from a preselected set of data sources
and using a well-defined target schema, we also pursue ap-
proaches that support the discovery phase, i.e. the inference
of the desired target schema and the selection of appropri-
ate data sources. The deployment of the logical integration
plans is another central issue. By providing mappings of
the logical operators defined in the integration plan to con-
crete physical operators of different runtime environments,
PALADIN can create plans for a variety of integration sys-
tems that currently use manually created integration plans.
The potential spectrum of runtime platforms reaches from
existing tools like IBM’s Information Integrator to a BPEL
choreography that uses distributed web services as oper-
ators. Here, the principal idea of patterns can be reused
to define the basic mappings between logical and physi-
cal operators and to capture the special properties of each
platform. If a mapping for a pattern’s logical operator to a
physical operator of the respective runtime environment is
missing or if it simply provides no suitable physical opera-
tor implementation, the definition of the graph-based oper-
ator can be used as a fallback: Using extension mechanisms
present in many of the potential runtime environments, a
generic operator can be provided that can be configured us-
ing the transformational description in the logical integra-
tion plan alone.
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