
B-Tree Locking B 273

B

category, and a bubble attached to a node represents a

set of archaeological records. The size of a bubble

attached to a node reflects the number of records

belonging to that category. The hyperbolic tree sup-

ports ‘‘focus + context’’ navigation; it also provides an

overview of records organized in the archaeological

digital library. It shows that the records are from

seven archaeological sites (the Megiddo site has the

most) and are of twelve different types.

Future Directions
Browsing and searching are often provided by digital

libraries as separate services. Developers commonly

see these functions as having different underlying

mechanisms, and they follow a functional, rather than

a task-oriented, approach to interaction design. While

exhibiting complementary advantages, neither para-

digm alone is adequate for complex information

needs. Searching is popular because of its ability to

identify information quickly. On the other hand,

browsing is useful when appropriate search keywords

are unknown or unavailable to users. Browsing also is

appropriate when a great deal of contextual informa-

tion is obtained along the navigation path. Therefore,

a synergy between searching and browsing is required

to support users’ information seeking goals. Browsing

and searching can be converted and switched to each

other under certain conditions [5]. This suggests some

new possibilities for blurring the dividing line between

browsing and searching. If these two services are not

considered to have different underlying mechanisms,

they will not be provided as separated functions in

digital libraries, and may be better integrated.

Text mining and visualization techniques provide

digital libraries additional powerful exploring ser-

vices, with possible beneficial effects on browsing and

searching. Digital library exploring services such as

browsing, searching, clustering, and visualization can

be generalized in the context of a formal digital library

framework [5]. The theoretical approach may provide

a systematic and functional method to design and

implement exploring services for domain focused

digital libraries.

Experimental Results
See Fig. 2 – Fig. 6 above, and the corresponding

explanation.
Data Sets
See Fig. 2 – Fig. 6 above, and the ETANA Digital

Library [5].
Cross-references
▶Digital Libraries

Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison-Wesley, Reading, MA, 1999.

2. Fox E.A. and Urs S.R. Digital libraries, chap. 12. In Annual

Review of Information Science and Technology, Vol. 36,

B. Cronin (ed.); Medford, NJ, Information Today, Inc. 2002,

pp. 503–589.

3. Fox E.A., Rous B., and Marchionini G. ACM’s hypertext and

hypermedia publishing projects. In Hypertext/Hypermedia

Handbook, E. Berk, J. Devlin (eds.). McGraw-Hill, NY, 1991,

pp. 465–467.

4. Goncalves M., Fox E.A., Watson L., and Kipp N. Streams, struc-

tures, spaces, scenarios, societies (5S): a formal model for digital

libraries. ACM Trans. Inf. Syst., 22(2):270–312, 2004.

5. Shen R., Vemuri N., Fan W., Torres R., and Fox E.A. Exploring

digital libraries: integrating browsing, searching, and visualiza-

tion. In Proc. 6th ACM/IEEE-CS joint Conference on Digital

Libraries, 2006, pp. 1–10.
B-Tree

▶B+-Tree
B-Tree Concurrency Control

▶B-Tree Locking
B-Tree Locking

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
B-tree concurrency control; Row-level locking; Key

value locking; Key range locking; Lock coupling;

Latching; Latch coupling; Crabbing

274B B-Tree Locking
Definition
B-tree locking controls concurrent searches and updates

in B-trees. It separates transactions in order to protect

the B-tree contents and it separates threads in order to

protect the B-tree data structure. Nowadays, the latter is

usually called latching rather than locking.

Historical Background
Bayer and Schkolnick [1] presented multiple locking

(latching) protocols for B*-trees (all data records in the

leaves, merely separator keys or ‘‘reference keys’’ in

upper nodes) that combined high concurrency with

deadlock avoidance. Their approach for insertion and

deletion is based on deciding during a root-to-leaf

traversal whether a node is ‘‘safe’’ from splitting (dur-

ing an insertion) or merging (during a deletion), and

on reserving appropriate locks (latches) for ancestors

of unsafe nodes.

Lehman and Yao defined Blink-trees by relaxing the

B-tree structure in favor of higher concurrency [8].

Srinivasan and Carey demonstrated their high perfor-

mance using detailed simulations [13]. Jaluta et al.

recently presented a detailed design for latching in

Blink-trees, including a technique to avoid excessive

link chains and thus poor search performance [7].

IBM’s System R project explored multiple transac-

tion management techniques, including transaction iso-

lation levels and lock duration, predicate locking and

key value locking, multi-granularity and hierarchical

locking, etc. These techniques have been adapted and

refined in many research and product efforts since then.

Research into multi-level transactions [14] and into

open nested transactions [3,12] enables crisp separation

of locks and latches – the former protecting database

contents against conflicts among transactions and the

latter protecting in-memory data structures against con-

flicts among concurrent threads.

Mohan’s ARIES/KVL design [10,11] explicitly sepa-

rates locks and latches, i.e., logical database contents

versus ‘‘structure maintenance’’ in a B-tree. A key value

lock covers both a gap between two B-tree keys and the

upper boundary key. In non-unique indexes, an inten-

tion lock on a key value permits operations on separate

rows with the same value in the indexed column. In

contrast, other designs include the row identifier in the

unique lock identifier and thus do not need to distin-

guish between unique and non-unique indexes.

Lomet’s design for key range locking [4] attempts

to adapt hierarchical and multi-granularity locking to
keys and half-open intervals but requires additional

lock modes, e.g., a ‘‘range insert’’ mode, to achieve the

desired concurrency. Graefe’s design [9] applies tradi-

tional hierarchical locking to keys and gaps (open inter-

vals) between keys, employs ghost (pseudo-deleted)

records during insertion as well as during deletion,

and permits more concurrency with fewer special cases.

The same paper also outlines hierarchical locking

exploiting B-trees’ hierarchical structure or multi-field

B-tree keys.

Foundations
The foundations of B-tree locking are the well-known

transaction concepts, including multi-level transac-

tions and open nested transactions, and pessimistic

concurrency control, i.e., locking. Multiple locking

concepts and techniques are employed, including

two-phase locking, phantom protection, predicate

locks, precision locks, key value locking, key range

locking, multi-granularity locking, hierarchical lock-

ing, and intention locks.

Preliminaries

Most work on concurrency control and recovery in

B-trees assumes what Bayer and Schkolnick call

B*-trees [1] and what Comer calls B+-trees [2], i.e.,

all data records are in leaf nodes and keys in non-leaf or

‘‘interior’’ nodes act merely as separators enabling

search and other operations but not carrying logical

database contents. Following this tradition, this entry

ignores the original design of B-trees with data records

in interior nodes.

Also ignored are many other variations of B-trees

here. This includes what Comer, following Knuth, calls

B*-trees, i.e., attempting to merge an overflowing node

with a sibling rather than splitting it immediately.

Among the ignored techniques are whether or not

underflow is recognized and acted upon by load balanc-

ing and merging nodes, whether or not empty nodes are

removed immediately or ever, whether or not leaf nodes

form a singly ordoubly linked list using physical pointers

(page identifiers) or logical boundaries (fence keys equal

to separators posted in the parent node during a split),

whether suffix truncation is employed when posting a

separator key, whether prefix truncation or any other

compression is employed on each page, and the type of

information associated with B-tree keys. Most of these

issues have little or no bearing on locking in B-trees, with

B-Tree Locking B 275

B

the exception of sibling pointers, as indicated below

where appropriate.

Two Forms of B-Tree Locking

B-tree locking, or locking in B-tree indexes, means two

things. First, it means concurrency control among

concurrent database transactions querying or modify-

ing database contents and its representation in B-tree

indexes. Second, it means concurrency control among

concurrent threads modifying the B-tree data structure

in memory, including in particular images of disk-

based B-tree nodes in the buffer pool.

These two aspects have not always been separated

cleanly. Their difference becomes very apparent when a

single database request is processed by multiple parallel

threads. Specifically, two threads within the same trans-

action must ‘‘see’’ the same database contents, the same

count of rows in a table, etc. This includes one thread

‘‘seeing’’ updates applied by the other thread. While one

thread splits a B-tree node, however, the other thread

should not observe intermediate and incomplete data

structures. The difference also becomes apparent in the

opposite case when a single operating system thread is

multiplexed to serve all user transactions.

These two purposes are usually accomplished by

two different mechanisms, locks and latches. Unfortu-

nately, the literature on operating systems and pro-

gramming environments usually uses the term locks

for the mechanisms that in database systems are called

latches, which can be confusing.

Locks separate transactions using read and write

locks on pages, on B-tree keys, or even gaps (open inter-

vals) between keys. The latter twomethods are called key

value locking and key range locking. Key range locking is

a form of predicate locking that uses actual key values in

the B-tree and the B-tree’s sort order to define predicates.

By default, locks participate in deadlock detection and

are held until end-of-transaction. Locks also support

sophisticated scheduling, e.g., using queues for pending

lock requests and delaying new lock acquisitions for lock

conversions, e.g., an existing shared lock to an exclusive

lock. This level of sophistication makes lock acquisition

and release fairly expensive, often thousands of CPU

cycles, some of those due to cache faults in the lock

manager’s hash table.

Latches separate threads accessing B-tree pages,

the buffer pool’s management tables, and all other in-

memory data structures shared among multiple threads.

Since the lock manager’s hash table is one of the data
structures shared by many threads, latches are required

while inspecting or modifying a database system’s lock

information.With respect to shared data structures, even

threads of the same user transaction conflict if one thread

requires a write latch. Latches are held only during a

critical section, i.e., while a data structure is read or

updated. Deadlocks are avoided by appropriate coding

disciplines, e.g., requesting multiple latches in carefully

designed sequences. Deadlock resolution requires

a facility to roll back prior actions, whereas deadlock

avoidance does not. Thus, deadlock avoidance is more

appropriate for latches, which are designed for minimal

overhead and maximal performance and scalability.

Latch acquisition and release may require tens of instruc-

tions only, usually with no additional cache faults since

a latch can be embedded in the data structure it protects.

Latch Coupling and Blink-Trees

Latches coordinate multiple concurrent threads acces-

sing shared in-memory data structures, including

images of on-disk storage structures while in the buffer

pool. In the context of B-trees, latches solve several

problems that are similar to each other but nonetheless

lend themselves to different solutions.

First, a page image in the buffer pool must not be

modified (written) by one thread while it is interpreted

(read) by another thread. For this issue, database sys-

tems employ latches that differ from the simplest

implementations of critical sections and mutual exclu-

sion only by the distinction between read-only latches

and read-write latches, i.e., shared or exclusive access.

Latches are useful not only for pages in the buffer

pool but also for the buffer pool’s table of contents or

the lock manager’s hash table.

Second, while following a pointer (page identifier)

from one page to another, e.g., from a parent node to a

child node in a B-tree index, the pointer must not be

invalidated by another thread, e.g., by deallocating a

child page or balancing the load among neighboring

pages. This issue requires retaining the latch on the

parent node until the child node is latched. This tech-

nique is traditionally called ‘‘lock coupling’’ or better

‘‘latch coupling.’’

Third, ‘‘pointer chasing’’ applies not only to parent-

child pointers but also to neighbor pointers, e.g., in a

chain of leaf pages during a scan. This issue is similar to

the previous, with two differences. On the positive side,

asynchronous read-ahead may alleviate the frequency of

buffer faults. On the negative side, deadlock avoidance

276B B-Tree Locking
among scans in opposite directions requires that latch

acquisition code provides an immediate failure mode.

Fourth, during a B-tree insertion, a child node may

overflow and require an insertion into its parent node,

which may thereupon also overflow and require an

insertion into the child’s grandparent node. In the

most extreme case, the B-tree’s root node splits and a

new root node is added. Going back from the leaf

towards the B-tree root works well in single-threaded

B-tree implementations, but in multi-threaded code

it introduces the danger of deadlocks. This issue

affects all updates, including insertion, deletion, and

even record updates, the latter if length changes in

variable-length records can lead to nodes splitting or

merging. The most naı̈ve approach, latching an entire

B-tree with a single exclusive latch, is obviously not

practical in multi-threaded servers.

One approach latches all nodes in exclusive mode

during the root-to-leaf traversal. The obvious problem

in this approach is the potential concurrency bottle-

neck, particularly at a B-tree’s root. Another approach

performs the root-to-leaf search using shared latches

and attempts an upgrade to an exclusive latch when

necessary. A third approach reserves nodes using ‘‘up-

date’’ or ‘‘upgrade’’ latches. A refinement of these

three approaches retains latches on nodes along its

root-to-leaf search only until a lower, less-than-full

node guarantees that split operations will not propa-

gate up the tree beyond the lower node. Since most

nodes are less than full, most insertion operations will

latch no nodes in addition to the current one.

A fourth approach splits nodes proactively during a

root-to-leaf traversal for an insertion. This method

avoids both the bottleneck of the first approach and

the failure point (upgrading a latch) of the second

approach. Its disadvantage is that it wastes some space

by splitting earlier than truly required. A fifth approach

protects its initial root-to-leaf searchwith shared latches,

aborts this search when a node requires splitting, restarts

a new one, and upon reaching the node requiring a split,

acquires an exclusive latch and performs the split.

An entirely different approach relaxes the data

structure constraints of B-tress and divides a node

split into two independent steps. Each node has a

high fence key and a pointer to its right neighbor,

thus the name Blink-trees. The right neighbor might

not yet be referenced in the node’s parent and a root-

to-leaf search might need to proceed to the node’s right

neighbor. The first step of splitting a node creates the
high fence key and a new right neighbor. The second,

independent step posts the high fence key in the par-

ent. The second step should happen as soon as possible

yet it may be delayed beyond a system reboot or even a

crash. The advantage of Blink-trees is that allocation of

a new node and its initial introduction into the B-tree

is a local step, affecting only one preexisting node. The

disadvantages are that search may be a bit less efficient,

a solution is needed to prevent long linked lists among

neighbor nodes during periods of high insertion rates,

and verification of a B-tree’s structural consistency is

more complex and perhaps less efficient.

Key Range Locking

Locks separate transactions reading and modifying

database contents. For serializability, read locks are

retained until end-of-transaction. Write locks are alw-

ays retained until end-of-transaction in order to ensure

the ability to roll back all changes if the transaction

aborts. High concurrency requires a fine granularity of

locking, e.g., locking individual keys in B-tree indexes.

The terms key value locking and key range locking

are often used interchangeably.

Key range locking is a special form of predicate

locking. The predicates are defined by intervals in the

sort order of the B-tree. Interval boundaries are the

key values currently existing in the B-tree, which form

half-open intervals including the gap between two

neighboring keys and one of the end points.

In the simplest form of key range locking, a key and

the gap to the neighbor are locked as a unit. An exclusive

lock is required for any form of update of this unit,

including modifying non-key fields of the record, dele-

tion of the key, insertion of a new key into the gap, etc.

Deletion of a key requires a lock on both the old key and

its neighbor; the latter is required to ensure the ability to

re-insert the key in case of transaction rollback.

High rates of insertion can create a hotspot at the

‘‘right edge’’ of a B-tree index on an attribute corre-

lated with time. With next-key locking, one solution

verifies the ability to acquire a lock on +1 but does

not actually retain it. Such ‘‘instant locks’’ violate two-

phase locking but work correctly if a single acquisition

of the page latch protects both verification of the lock

and creation of the new key on the page.

In those B-tree implementations in which a deletion

does not actually erase the record and instead merely

marks the record as invalid, ‘‘pseudo-deleted,’’ or a

‘‘ghost’’ record, each ghost record’s key participates in

B-Tree Locking B 277

B

key range locking just like a valid record’s key. Another

technique to increase concurrency models a key, the

appropriate neighboring open interval, and the combi-

nation of key and open interval as three separate items

[9]. These items form a hierarchy amenable to multi-

granularity locking. Moreover, since key, open interval,

and their combination are all identified by the key value,

additional lock modes can replace multiple invocations

of the lock manager by a single one, thus eliminating the

execution costs of this hierarchy.

Multi-granularity locking also applies keys and indi-

vidual rows in a non-unique index, whether such rows

are represented using multiple copies of the key, a list

of row identifiers associated with a single copy of the key,

or even a bitmap. Multi-granularity locking techniques

exploiting a B-tree’s tree structure or a B-tree’s com-

pound (multi-column) key have also been proposed.

Finally, ‘‘increment’’ locks may be very beneficial for

B-tree indexes on materialized summary views [5].

Both proposals need many details worked out, e.g.,

appropriate organization of the lock manager’s hash

table to ensure efficient search for conflicting locks and

adaptation during structure changes in the B-tree (node

splits, load balancing among neighboring nodes, etc.).

Key Applications
B-tree indexes have been called ubiquitous more than a

quarter of a century ago [2], and they have become

ever more ubiquitous since. Even for single-threaded

applications, concurrent threads for maintenance and

tuning require concurrency control in B-tree indexes,

not to mention online utilities such as online backup.

The applications of B-trees and B-tree locking are

simply too numerous to enumerate them.

Future Directions
Perhaps the most urgently needed future direction

is simplification – concurrency control and recovery

functionality and code are too complex to design,

implement, test, tune, explain, and maintain. Elimina-

tion of any special cases without a severe drop in

performance or scalability would be welcome to all

database development and test teams.

At the same time, B-trees are employed in new

areas, e.g., Z-order UB-trees for spatial and temporal

information, various indexes for unstructured data

and XML documents, in-memory and on-disk indexes

for data streams and as caches of reusable intermediate

query results. It is unclear whether these application
areas require new concepts or techniques in B-tree

concurrency control.

Online operations – load and query, incremental

online index creation, reorganization & optimization,

consistency check, trickle load and zero latency in data

warehousing including specialized B-tree structures.

Scalability – granularities of locking between page

and index based on compound keys or on B-tree struc-

ture; shared scans and sort-based operations including

‘‘group by,’’ merge join, and poor man’s merge join

(index nested loops join); delegate locking (e.g., locks

on orders cover order details) including hierarchical

delegate locking.

B-tree underpinnings for non-traditional database

indexes, e.g., blobs, column stores, bitmap indexes, and

master-detail clustering.

Confusion about transaction isolation levels in

plans with multiple tables, indexes, materialized and

indexed views, replicas, etc.
URL to Code
Gray and Reuter’s book [6] shows various examples of

sample code. In addition, the source of various open-

source database systems is readily available.
Cross-references
▶Concurrency Control and Recovery

▶Database benchmarks – online transaction

processing

▶ Locking Granularity and Lock Types

▶ pessimistic concurrency control

▶ phantoms

▶ precision locks

▶ predicate locks

▶ relational data warehousing

▶ System Recovery

▶ two-phase commit

▶ two-phase locking

▶write-ahead logging
Recommended Reading
1. Bayer R. and Schkolnick M. Concurrency of operations on

B-trees. Acta Inf., 9:1–21, 1977.

2. Comer D. The ubiquitous B-tree. ACM Comput. Surv.,

11(2):121–137, 1979.

3. Eliot J. and Moss B. Open Nested Transactions: Semantics

and Support. In Proc. Workshop on Memory Performance

Issues 2006.

278B Buffer Management
4. Graefe G. Hierarchical locking in B-tree indexes. BTW Conf.,

2007, pp. 18–42.

5. Graefe G. and Zwilling M.J. Transaction support for indexed

views. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004.

6. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

7. Jaluta I., Sippu S., and Soisalon-Soininen E. Concurrency con-

trol and recovery for balanced B-link trees. VLDB J.,

14(2):257–277, 2005.

8. Lehman P.L. and Yao S.B. Efficient locking for concurrent opera-

tions on B-trees. ACM Trans. Database Syst., 6(4):650–670,

1981.

9. Lomet D.B. Key range locking strategies for improved concur-

rency. In Proc. 19th Int. Conf. on Very Large Data Bases, 1993,

pp. 655–664.

10. Mohan C. ARIES/KVL: A key-value locking method for con-

currency control of multiaction transactions operating on B-tree

indexes. In Proc. 16th Int. Conf. on Very Large Data Bases, 1990,

pp. 392–405.

11. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: A transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

12. Ni Y., Menon V., Adl-Tabatabai A-R., Hosking AL., Hudson RL.,

Moss JEB., Saha B., and Shpeisman T. Open nesting in software

transactional memory. In Proc. 12th ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming, 2007,

pp. 68–78.

13. Srinivasan V. and Carey M.J. Performance of B-tree concurrency

algorithms. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1991, pp. 416–425.

14. Weikum G. Principles and realization strategies of multilevel

transaction management. ACM Trans. Database Syst.,

16(1):132–180, 1991.
Buffer Management

GIOVANNI MARIA SACCO

University of Torino, Torino, Italy

Definition
The database buffer is a main-memory area used to

cache database pages. Database processes request pages

from the buffer manager, whose responsibility is to

minimize the number of secondary memory accesses

by keeping needed pages in the buffer. Because typical

database workloads are I/O-bound, the effectiveness of

buffer management is critical for system performance.
Historical Background
Buffer management was initially introduced in the

1970s, following the results in virtual memory systems.

One of the first systems to implement it was IBM

System-R. The high cost of main-memory in the

early days forced the use of very small buffers, and

consequently moderate performance improvements.

Foundations
The buffer is a main-memory area subdivided into

frames, and each frame can contain a page from a

secondary storage database file. Database pages are

requested from the buffer manager. If the requested

page is in the buffer, it is immediately returned to the

requesting process with no secondary memory access.

Otherwise, a fault occurs and the page is read into a

free frame. If no free frames are available, a ‘‘victim’’

page is selected and its frame is freed by clearing its

content, after writing it to secondary storage if the

page was modified. Usually any page can be selected

as a victim, but some systems allow processes actively

using a page to fix or pin it, in order to prevent the

buffer manager from discarding it [5]. Asynchronous

buffered write operations have an impact on the re-

covery subsystem and require specific protocols not

discussed here.

There are obvious similarities between buffer man-

agement and virtual memory (VM) systems [3]. In

both cases, the caching system tries to keep needed

pages in main-memory in order to minimize second-

ary memory accesses and hence speed up execution.

As in VM systems, buffer management is characterized

by two policies: the admission policy, which determines

when pages are loaded into the buffer, and the replace-

ment policy, which selects the page to be replaced when

no empty frames are available. The admission policy

normally used is demand paging (i.e., a missing page is

read into the buffer when requested by a process),

although prefetching (pages are read before processes

request them) was studied (e.g., [1]). Since the inter-

action with the caching system is orders of magnitude

less frequent in database systems than in VM systems,

‘‘intelligent’’ replacement policies such as LRU [3] (the

Least Recently Used page is selected for replacement)

can be implemented in software, with no performance

degradation. Inverted page tables are used because

their space requirement is proportional to the buffer

size rather than to the entire database space as in

	B
	B+-Tree
	Synonyms
	Definition
	Historical Background
	Foundations
	Structure
	Query Processing
	Insertion
	Deletion
	Comparison with Some Other Index Structures

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Backup
	Backup and Restore
	Synonyms
	Definition
	Key Points
	Cross-references

	Backup Copy
	Backup Mechanisms
	Backward Recovery
	Bag Semantics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Bagging
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Base-line Clock
	Bayes Classifier
	Bayesian Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Text Document Classification
	Image Pattern Recognition
	Medical Diagnostic and Decision Support Systems
	Email Spam Filtering

	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	BCNF
	Belief Time
	Benchmark
	Biased Distribution
	Bibliography
	Bi-clustering
	Bioinformatics
	Biological Data Retrieval, Integration, and Transformation
	Biological Metadata Management
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Biological Networks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Biological Pathways
	Biological Query Languages
	Biological Resource Discovery
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Biological Sequences
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Biomedical Data Annotation
	Biomedical Data/Content Acquisition, Curation
	Synonyms
	Definition
	Historical Background
	Foundations
	Technical Issues
	The Different Types of Expressivity of Ontologies/Vocabularies Used to Create the Annotations
	Storage Schemes and Data Models to Store These Annotations in Underlying Databases
	Techniques for Indexing the Curated Annotation for Retrieval
	Workflow Aspects of the Curation Process

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Biomedical Image Data Types and Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Biomedical Informatics
	Biomedical Literature
	Biomedical Scientific Textual Data Types and Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Information Retrieval
	Information Extraction
	Text Mining

	Key Applications
	Cross-references
	Recommended Reading

	Biostatistics and Data Analysis
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-reference
	Recommended Reading

	BIR Model
	Bit Vector Join
	Bi-temporal Access Methods
	Bitemporal Algebras
	Bitemporal Data Model
	Bi-Temporal Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Bitemporal Interval
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bitemporal Relation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bitmap Index
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Bitmap-based Index Structures
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Blind Signatures
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bloom Filter Join
	Bloom Filters
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Bloom Join
	BM25
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Boolean Model
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Boosting
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Bootstrap
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Bootstrap Aggregating
	Bootstrap Estimation
	Bootstrap Sampling
	Bottom-up Semantics
	Boyce-Codd Normal Form
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	BP-Completeness
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	BPEL
	BPEL4WS
	BPMN
	Bpref
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Branch
	Bridging
	Browsing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Browsing in Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	B-Tree
	B-Tree Concurrency Control
	B-Tree Locking
	Synonyms
	Definition
	Historical Background
	Foundations
	Preliminaries
	Two Forms of B-Tree Locking
	Latch Coupling and Blink-Trees
	Key Range Locking

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Buffer Management
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Buffer Manager
	Synonyms
	Definition
	Historical Background
	Foundations
	Buffer Pool Interfaces
	Replacement Policies
	Asynchronous I/O
	Concurrency Control and Recovery
	Cooperative Buffer Pool Management

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Buffer Pool
	Synonyms
	Definition
	Historical Background
	Foundations
	Buffer Frames
	Buffer Pool Data Structures
	Replacement Policies

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Business Intelligence
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Execution Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Banking
	Government
	Business-to-Business
	Health-care

	Cross-references
	Recommended Reading

	Business Process Model
	Business Process Modeling
	Business Process Modeling Notation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Monitoring
	Business Process Optimization
	Business Process Redesign
	Business Process Reengineering
	Synonyms
	Definition
	Historical Background
	Foundations
	Traditional Intra-Organizational Reengineering
	Supply Chain Management Process Reengineering
	Knowledge Management Process Reengineering
	Process Modeling Languages and Techniques

	Key Applications
	Cross-references
	Recommended Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

