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DEFINITION
In contrast to transaction aborts, a crash is typically a major failure by which the state of
the current database is lost or parts of storage media are unrecoverable (destroyed).
Based on log data from a stable log, also called temporary log file, and the inconsistent
and/or outdated state of the permanent database, system recovery has to reconstruct the
most recent transaction-consistent database state. Because DBMS restart may take too
long to be masked for the user, a denial of service can be observed. Recovery from me-
dia failures relies on the availability of (several) backup or archive copies of earlier DB
states – organized according to the generation principle – and archive logs (often du-
plexed) covering the processing intervals from the points of time the backup copies were
created. Archive recovery usually causes much longer outages than system recovery.

HISTORICAL BACKGROUND
Log data delivering the needed redundancy to recover from failures was initially stored
on nonvolatile core memory to be reclaimed at restart by a so-called log salvager [5] in
the “pre-transaction area”. Advances in VLSI technology enabled the use of cheaper and
larger, but volatile semiconductor memory as the computers’ main memory. This technol-
ogy change triggered by 1971 in industry – driven by database product adjustments – the
development of new and refined concepts of logging such as log sequence numbers
(LSNs), write-ahead log protocol (WAL), log duplexing and more. Typically, these con-
cepts were not published, nevertheless they paved the way towards the use of ACID
transactions. As late as 1978, Jim Gray documented the design of such a logging system
implemented in IMS in a widely referenced publication [3].

Many situations and dependencies related to failures and recovery from those in data-
bases have been thoroughly explored by Lawrence Bjork and Charles Davies in their
studies concerning DB/DC systems back in 1973 leading to the so-called “spheres of
control” [2]. The first published implementation of the transaction concept by a full-
fledged DBMS recovery manager was that of System R, started in 1976 [4]. It refined the
Do-Undo-Redo protocol and enabled automatic recovery for new recoverable types and
operations. In 1981, Andreas Reuter presented in his Ph.D. dissertation further investi-
gations and refinements of concepts related to failure handling in database systems [9].
Delivering a first version of the principles of transaction-oriented database recovery
[Härder and Reuter 1979], including the Ten Commandments [7], this classification
framework, defining the paradigm of transaction-oriented recovery and coining the acro-
nym ACID for it [6], was finally published in 1983. The most famous and most complete
description of recovery methods and their implementation was presented by C. Mohan et
al. in the ARIES paper [8] in 1992, while thorough treatment of all questions related to
this topic appeared in many textbooks, especially those of Bernstein, Hadzilacos, and
Goodman [1], Gray and Reuter [5], and Weikum and Vossen [11]. All solutions imple-
mented for crash recovery in industrial-strength DBMSs are primarily disk-based. Pro-
posals to use “safe RAM”, for example, were not widely accepted. 
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SCIENTIFIC FUNDAMENTALS
The most difficult failure type to be recovered from is the system failure or system crash
(see Logging and Recovery). Due to some (expected, but) unplanned failure event (a bug
in the DBMS code, an operating system fault, a power or hardware failure, etc.), the cur-
rent database – comprising all objects accessible to the DBMS during normal processing
– is not available anymore. In particular, the in-memory state of the DBMS (lock tables,
cursors and scan indicators, status of all active transactions, etc.) and the contents of the
database buffer and the log buffer are lost. Furthermore, the state lost may include infor-
mation about LSNs, ongoing commit processing with participating coordinators and par-
ticipants as well as commit requests and votes. Therefore, restart cannot rely on such in-
formation and has to refer to the temporary log file (stable log) and the permanent (ma-
terialized) database, that is, the state the DBMS finds after a crash at the non-volatile
storage devices (disks) without having applied any log information. 

Consistency concerns
According to the ACID principle, a database is consistent if and only if it contains the re-
sults of successful transactions – called transaction-consistent database. Because a
DBMS application must not lose changes of committed transactions and all of them have
contributed to the DB state, the goal of crash recovery is to establish the most recent
transaction-consistent DB state. For this purpose, redo and undo recovery is needed, in
general. Results of committed transactions may not yet be reflected in the database, be-
cause execution has been terminated in an uncontrolled manner and the corresponding
pages containing such results were not propagated to the permanent DB at the time of
the crash. Therefore, they must be repeated, if necessary – typically by means of log in-
formation. On the other hand, changes of incomplete transactions may have reached the
permanent DB state on disk. Hence, undo recovery has to completely roll back such un-
committed changes. 

Because usually many interactive users rely in their daily business on DBMS services,
crash recovery is very time-critical. Therefore, crash-related interruption of DBMS pro-
cessing should be masked for them as far as possible. Although today DBMS crashes
are rather rare events and may occur several times a month or a year – depending on
the stability of both the DBMS and its operational environment –, their recovery should
take no more than a number of seconds or at most a few minutes (as opposed to archive
recovery), even if GByte or TByte databases with thousands of users are involved.

Forward recovery
Having these constraints and requirements in mind, which kind of recovery strategies can
be applied? Despite the presence of so-called non-stop systems (giving the impression
that they can cope with failures by forward recovery), rollforward is very difficult, if not im-
possible in any stateful system. To guarantee atomicity in case of a crash, rollforward re-
covery had to enable all transactions to resume execution so that they can either com-
plete successfully or require to be aborted by the DBMS. Assume the DB state containing
the most recent successful DB operations could be made available, that is, all updates
prior to the crash have completely reached the permanent DB state. Even then rollfor-
ward would be not possible, because a transaction cannot resume in “forward direction”
unless its local state is restored. Moreover in a DBMS environment, the in-memory state
lost makes it entirely impossible to resume from the point at the time the crash occurred.
For these reasons, a rollback strategy for active transactions is the only choice in case of
crash recovery to ensure atomicity (wiping out all traces of such transactions); later on
these transactions are started anew either by the user or the DBMS environment. The
2



only opportunities for forward actions are given by redundant structures where it is imma-
terial for the logical DB content whether or not modifying operations are undone or com-
pleted. A typical example is the splitting operation of a B-tree node (see B-tree locking).

Logging methods and rules
Crash recovery – as any recovery from a failure – needs some kind of redundancy to de-
tect invalid or missing data in the permanent database and to “repair” its state as re-
quired, i.e., removing modifications effected by uncommitted transactions from it and
supplementing it with updates of complete transactions. For this task, the recovery algo-
rithms typically rely on log data collected during normal processing. Different forms of log-
ging are conceivable. Logical logging is a kind of operator logging; it collects operators
and their arguments at a higher level of abstraction (e.g., for internal operations (actions)
or operations of the data management language (DML)). While this method of logging
may save I/O to and space in the log file during normal processing, it requires at restart
time a DB state that is level-consistent w.r.t. the level of abstraction used for logging, be-
cause the logged operations have to be executed using data of the permanent database.
For example, action logging and DML-operation logging require action consistency and
consistency at the application programming interface (API consistency), respectively [7].
Hence, the use of this kind of methods implies the atomic propagation (see below) of all
pages modified by the corresponding operation which can be implemented by shadow
pages or differential files. Physical logging – in the simplest form collecting the before-
and after-images of pages – does not expect any form of consistency at higher DB ab-
straction levels and, in turn, can be used in any situation, in particular, when non-atomic
propagation of modified pages (update-in-place) is performed. However, writing before-
and after-images of all modified pages to the log file, is very time-consuming (I/O) and
not space-economical at all. Therefore, a combination of both kinds leads to the so-called
physiological logging, which can be roughly characterized as “physical to a page and log-
ical within a page”. It enables compact representation of log data (logging of elementary
actions confined to single pages, entry logging) and leads to the practically most impor-
tant logging/recovery method; non-atomic propagation of pages to disk is sufficient for
the application of the log data. Together with the use of log sequence numbers in the log
entries and in the headers of the data pages (combined use of LSNs and PageLSNs, see
ARIES), simple and efficient checks at restart detect whether or not the modifications of
elementary actions have reached the permanent database, that is, whether or not undo
or redo operations have to be applied. 

While, in principle, crash recovery methods do not have specific requirements for forcing
pages to the permanent DB, sufficient log information, however, must have reached the
stable log. The following rules (for forcing of the log buffer to disk) have to be observed
to guarantee recovery to the most recent transaction-consistent DB state: 

• Redo log information must be written at the latest in phase 1 of commit.
• WAL (write ahead logging) has to be applied to enable undo operations, before un-

committed (dirty) data is propagated to the permanent database.
• Log information must not be discarded from the temporary log file, unless it is guar-

anteed that it will no longer be needed for recovery; that is, the corresponding data
page has reached the permanent DB. Typically, sufficient log information has been
written to the archive log, in addition (see Logging and Recovery).
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Taxonomy of crash recovery algorithms
Forcing log data as captured by these rules yields the necessary and sufficient condition
to successfully cope with system crashes. Specific assumptions concerning page prop-
agation to the permanent database only influence performance issues of the recovery
process. When dirty data can reach the permanent DB (steal property), recovery must be
prepared to execute undo steps and, in turn, redo steps when data modified by a trans-
action is not forced at commit or before (no-force property). In contrast, if propagation of
dirty data is prevented (no-steal property), the permanent DB only contains clean (but po-
tentially missing or old) data, thus making undo steps unnecessary. Finally, if all transac-
tion modifications are forced at commit (force property), redo is never needed at restart.

Hence, these properties concerning buffer replacement and update propagation are
maintained by the buffer manager/transaction manager during normal processing and
lead to four cases of crash recovery algorithms which cover all approaches so far pro-
posed:

1. Undo/Redo: This class contains the steal/no-force algorithms which have to observe
no other requirements than the logging rules. However, potentially undo and redo
steps have to be performed during restart after a crash.

2. Undo/NoRedo: The so-called steal/force algorithms guarantee at any time that all
actions of committed transactions are in the permanent DB. However, because of
the steal property, dirty updates may be present, which may require undo steps, but
never redo steps during restart. 

3. NoUndo/Redo: The corresponding class members are known as no-steal/no-force
algorithms which guarantee that dirty data never reaches the permanent DB. Dirty
data pages are either never replaced from the DB buffer or, in case buffer space is
in short supply, they are displaced to other storage areas outside the permanent DB.
Restart after a crash may require redo steps, but never undo steps.

4. NoUndo/NoRedo: This “magic” class of the so-called no-steal/force algorithms al-
ways guarantees a state of the permanent DB that corresponds to the most recent
transaction-consistent DB state. It requires that no modified data of a transaction
reaches the permanent DB before commit and that all transaction updates are atom-
ically propagated (forced) at commit. Hence, neither undo nor redo steps are ever
needed during restart.

The discussion of these four cases is summarized in Figure 1 which represents a taxon-
omy of crash recovery algorithms. 

Figure 1   Taxonomy of crash recovery algorithms
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Implementation implications 
The latter two classes of algorithms (NoUndo) require a mechanism which can propagate
a set of pages in an atomic way (w.r.t. the remaining DBMS processing). Such a mech-
anism needs to defer updates to the permanent DB until or after these updates become
committed and can be implemented by various forms of shadowing concepts or differen-
tial file approaches. 

Algorithms relying on redo steps, i.e., without the need to force committed updates to the
permanent DB, have no control about the point of time when committed updates reach
the permanent DB. While the buffer manager will propagate back most of the modified
pages soon after the related update operations, a few hot-spot pages are modified again
and again, and, since they are referenced so frequently, have not been written from the
buffer. These pages potentially have accumulated the updates of many committed trans-
actions, and redo recovery will therefore have to go back very far on the temporary log.
As a consequence, restart becomes expensive and the DBMS’s out-of-service time un-
acceptably long. For this reason, some form of checkpointing is needed to make restart
costs independent of mean time between failures. Generating a checkpoint means col-
lecting information related to the DB state in a safe place, which is used to define and
limit the amount of redo steps required after a crash. The restart logic can then return to
this checkpoint state and attempt to recover the most recent transaction-consistent state. 

From a conceptual point of view, the algorithms of class 4 seem to be particularly attrac-
tive, because they always preserve a transaction-consistent permanent DB. However in
addition to the substantial cost of providing atomic update propagation, the need of forc-
ing all updates at commit, necessarily in a synchronous way which may require a large
amount of physical I/Os and, in turn, extend the lock duration for all affected objects,
makes this approach rather expensive. Furthermore, with the typical disk-based DB ar-
chitectures, pages are units of update propagation, which has the consequence that a
transaction updating a record in a page cannot share this page with other updaters, be-
cause dirty updates must not leave the buffer and updates of complete transactions must
be propagated to the permanent DB at commit. Hence, no-steal/force algorithms imply at
least page locking as the smallest lock granule.

One of these cost factors – either synchronously forced updates at commit or atomic up-
dates for NoUndo – applies to the algorithms of class 2 and 3 each. Therefore, they were
not a primary choice for the DBMS vendors competing in the today’s market.

Hence, the laissez-faire solution “steal, no-force” with non-atomic update propagation
(update-in-place) is today’s favorite solution, although it always leaves the permanent DB
in a “chaotic state“ containing dirty and outdated data pages and keeping the latest ver-
sion of frequently used pages only in the DB buffer. Hence, with the optimistic expecta-
tion that crashes become rather rare events, it minimizes recovery provisions during nor-
mal processing. Checkpointing is necessary, but the application of direct checkpoints
flushing the entire buffer at a time, is not advisable anymore, when buffers of several
GByte are used. To affect normal processing as little as possible, so-called fuzzy check-
points are written; only a few pages with metadata concerning the DB buffer state have
to be synchronously propagated, while data pages are “gently” moved to the permanent
DB in an asynchronous way. 
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Archive recovery

So far, data of the permanent DB was assumed to be usable or at least recoverable using
the redundant data collected in the temporary log. This is illustrated by the upper path in
Figure 2. If any of the participating components is corrupted or lost because of other hard-
ware or software failure, archive recovery – characterized by the lower path – must be
tried. Successful recovery also implies independent failure modes of the components in-
volved. 

The creation of an archive copy, that is, copying the online version of the DB, is a very
expensive process; for example, creating a transaction-consistent DB copy would inter-
rupt update operation for a long time which is unacceptable for most DB applications.
Therefore, two base methods – fuzzy dumping and incremental dumping – were devel-
oped to reduce the burden of normal DB operation while an archive copy is created. A
fuzzy dump copies the DB on the fly in parallel with normal processing. The other method
writes only the changed pages to the incremental dump. Of course, both methods usually
deliver inconsistent DB copies such that log-based post-processing is needed to apply
incremental modifications. In a similar way, either type of dump can be used to create a
new, more up-to-date copy from the previous one, using a separate offline process such
that DB operation is not affected.

Archive copies are “hopefully” never or very infrequently used. Therefore, they may be
susceptible to magnetic decay. For this reason, redundancy is needed again, which is
usually solved by keeping several generations of the archive copy.

So far, all log information is assumed to be written only to the temporary log file during
normal processing. To create the (often duplexed) archive log, usually an independent
and asynchronously running process copies the redo data from the temporary log. To
guarantee successful recovery, failures when using the archive copies must be anticipat-
ed. Therefore, archive recovery must be prepared to start from the oldest generation and
hence the archive log must span the whole distance back to this point in time.

KEY APPLICATIONS
Recovery algorithms, and in particular for crash recovery, are a core part of each com-
mercial-strength DBMS and require a substantial fraction of design/implementation effort
and of the code base: “A recoverable action is 30% harder and requires 20% more code
than a non-recoverable action” (J. Gray). Because the occurrence of failures can not be
excluded and all data driving the daily business are managed in databases, mission-crit-
ical businesses depend on the recoverability of their data. In this sense, provisions for
crash recovery are indispensable in such DBMS-based applications. Another important
application area of crash recovery techniques are file systems, in particular their metada-
ta about file existence, space allocation, etc. 

Figure 2   Two ways of DB crash recovery and the components involved
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FUTURE DIRECTIONS
So far, crash recovery provisions are primarily disk-based. With “unlimited” memory
available, main-memory DBMSs will provide efficient and robust solutions without the
need of non-volatile storage for crash recovery. More and more approaches are expected
to exploit specialized storage devices such as battery-backed RAM or to use replication
in grid-organized memories. Executing online transaction processing sequentially, revo-
lutionary architectural concepts are already proposed which may not require transaction-
al facilities at all [10].
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