
Comput Sci Res Dev
DOI 10.1007/s00450-011-0186-9

S P E C I A L I S S U E PA P E R

New algorithms for join and grouping operations

Goetz Graefe

© Springer-Verlag 2011

Abstract Traditional database query processing relies on
three types of algorithms for join and for grouping opera-
tions. For joins, index nested loops join exploits an index
on its inner input, merge join exploits sorted inputs, and
hash join exploits differences in the sizes of the join inputs.
For grouping, an index-based algorithm has been used in the
past whereas today sort- and hash-based algorithms prevail.
Cost-based query optimization chooses the most appropri-
ate algorithm for each query and for each operation. Unfor-
tunately, mistaken algorithm choices during compile-time
query optimization are common yet expensive to investigate
and to resolve.

Our goal is to end mistaken choices among join algo-
rithms and among grouping algorithms by replacing the
three traditional types of algorithms with a single one. Like
merge join, this new join algorithm exploits sorted inputs.
Like hash join, it exploits different input sizes for unsorted
inputs. In fact, for unsorted inputs, the cost functions for re-
cursive hash join and for hybrid hash join have guided our
search for the new join algorithm. In consequence, the new
join algorithm can replace both merge join and hash join in
a database management system.

The in-memory components of the new join algorithm
employ indexes. If the database contains indexes for one
(or both) of the inputs, the new join can exploit persis-
tent indexes instead of temporary in-memory indexes. Us-

This paper largely overlaps with a paper presented at the BTW 2011
conference. Newly added sections cover prior work in much more
detail and, more importantly, a similar generalized algorithm for
grouping and aggregation.

G. Graefe (�)
Hewlett-Packard Laboratories, Madison, WI, USA
e-mail: goetz.graefe@hp.com

ing database indexes to find matching input records, the new
join algorithm can also replace index nested loops join.

In addition to join operations, a very similar algorithm
supports grouping (“group by” queries in SQL) and du-
plicate elimination. For unsorted inputs, candidate output
records take on the role of one of the inputs in a join oper-
ation. Our goal is to define a single grouping algorithm that
can replace grouping by repeated index searches, by sort-
ing, and by hashing. In other words, our goal is to end mis-
taken algorithm choices not only for joins and other binary
matching operations but also for grouping and other unary
matching operations in database query processing.

Finally, these new algorithms can be instrumental for ef-
ficient and robust data processing in a map-reduce environ-
ment, because ‘map’ and ‘reduce’ operations are similar in
essentials to join and grouping operations.

Results from an implementation of the core algorithm are
reported.

Keywords Relational databases · SQL · Query
processing · Robust performance · Query optimization
choice · Error · Mistake · Query execution algorithms ·
Inner join · Semi-join · Outer join · Intersection · Union ·
Difference · “Group by” · Grouping · Duplicate removal ·
Uniqueness · Equivalence classes · Sort order · “Interesting
orderings” · Order-preserving · Run generation · Merging ·
Buffer pool · Map-reduce

1 Introduction

SQL is the only truly successful non-procedural program-
ming language. In consequence, relational database man-
agement systems support physical data independence. For
example, the set of indexes and their partitioning may

mailto:goetz.graefe@hp.com

G. Graefe

change without effect on the tables, views, integrity con-
straints, etc. Non-procedural queries and physical data inde-
pendence both enable and require automatic query optimiza-
tion in a SQL compiler. Based on cardinality estimation, cost
calculation, query rewrite, algebraic equivalences, plan enu-
meration, and some heuristics, query optimization chooses
access paths, join order, join algorithms, and more. In most
cases, these compile-time choices are appropriate, but poor
choices often cause execution times worse than optimal by
orders of magnitude which in turn leads to dissatisfied users
and disrupted workflows in the data center. Investigation and
resolution of intermittent problems are very expensive.

Our research into robust query processing has led us
to focus on poor algorithm choices during compile-time
query optimization. In order to avoid increasing complexity
and sophistication during query optimization, e.g., by multi-
dimensional histograms [59] or run-time feedback and sta-
tistical learning [55], our efforts center on query execution
techniques. Adaptive merging [33] is one result of those
efforts—automatic creation and optimization of B-tree in-
dexes only if, when, and where warranted by the workload.
Earlier results include B-tree techniques that permit efficient
bulk load into fully indexed tables as well as pausing and re-
suming long-running index creation [24]. A recent research
result is a set modifications of external merge sort that per-
mit growing and shrinking the available memory allocation
at any time and by nearly any amount with nearly no loss
in efficiency and no loss of work already performed [30].
Contrary to prior efforts, e.g., [61], this includes exploiting
memory growth even during the output phase.

The new algorithm for join and grouping operations is an-
other result of this research. Its design objective is a single
algorithm that can serve as a replacement for all three tradi-
tional join algorithms. In order to be viable, it must match
the performance of the best traditional algorithm in all situ-
ations. If both join inputs are sorted, the new algorithm must
perform as well as merge join. If only one input is sorted,
it must perform as well as the better of merge join and hash
join. If both inputs are unsorted, it must perform as well as
hash join, including hybrid hash join. If both inputs are very
large, it must perform as well as hash join with recursive
partitioning or merge join and external merge sort with mul-
tiple merge levels. Finally, if one input is particularly small,
the new join algorithm must perform as well as index nested
loops join exploiting a temporary or permanent index for the
large input. The performance requirements for grouping al-
gorithms are analogous.

Table 1 summarizes the input characteristics exploited
by index nested loops join, merge join, hybrid hash join,
and the new join algorithm. Rather than merely performing
a run-time choice among the traditional join algorithms, it
combines elements from these algorithms and from external
merge sort in order to match its performance goals. There-
fore, we call it “generalized join algorithm” or, abbreviated,

Table 1 Join algorithms and exploited input properties

INLJ MJ HHJ GJ

Sorted input(s) + +
Indexed input(s) + +
Size difference + +

“g-join.” The algorithm for grouping and duplicate removal
is called “g-distinct.”

With one or two sorted inputs, g-join avoids run gener-
ation and merging, instead exploiting the sort orders in the
inputs. For indexed inputs, it exploits the index either as a
source of sorted data or as a means of efficient search.

For unsorted inputs, g-join employs run generation quite
like external merge sorts for a traditional merge join. Re-
placement selection (using a priority queue) and runs twice
the size of memory are required to match the I/O volume of
efficient hash join algorithms. Unlike external merge sort,
g-join avoids all or most merge steps, even leaving more
runs than can be merged in a single merge step. Like hybrid
hash join, it divides memory into two regions, one for im-
mediate join processing and one for handling large inputs. If
the size of the small join input is similar to the memory size,
most memory is assigned to the first region; if the size of the
small input is much larger, most or all memory is assigned
to the second region. As in hybrid hash join, the size of the
large join input does not affect the division of memory into
regions.

The following sections review the traditional join algo-
rithms (Sect. 2) and then introduce g-join (Sect. 3). Algo-
rithm details for unsorted inputs of various input sizes and
unknown input sizes (Sect. 4) are followed by answers for
the “usual questions” about any new query execution algo-
rithm or new algorithmic variant (Sect. 5). Based on those
details and answers, replacement of the traditional join algo-
rithms is discussed in depth (Sect. 6). Grouping algorithms
can be derived from the join algorithm by letting the candi-
date output records play the role of records from the small
join input (Sect. 7). Open issues are then listed to the best of
our ability (Sect. 8). Two partial prototype implementations
permit an initial performance evaluation of g-join (Sect. 9).
The last section offers our summary and conclusions from
this effort so far as well as some ideas for future work.

2 Prior work

The present section assumes a join operation with an equal-
ity predicate between the two join inputs. Special cases such
as joining a table with itself, joining on hash values, etc. are
feasible but ignored in the discussion. Similarly, we ignore

New algorithms for join and grouping operations

join operations without equality predicates. After the discus-
sion of the three families of traditional join algorithms, the
corresponding grouping algorithms are briefly reviewed.

G-join competes with the well-known (index) nested
loops join, merge join, and (hybrid) hash join algorithms,
which are reviewed in detail elsewhere [22]. The present
section describes the traditional join algorithms as well as
many of their optimizations, because g-join ought to com-
pete not with their worst but with their best variants.

The diag-join algorithm [41] can serve as preprocess-
ing step for most join algorithms including g-join. More-
over, the merge algorithm of g-join might seem similar to
the diag-join algorithm as both exploit sorting and a buffer
pool with sliding contents. The algorithms differ substan-
tially, however, because diag-join only applies in the case of
foreign key integrity constraint whereas g-join is a general
join algorithm, because diag-join depends on equal insertion
and scan sequences whereas g-join does not, and because
diag-join is inherently heuristic whereas g-join guarantees a
complete join result.

In addition to join algorithms, prior research has inves-
tigated access paths, in particular index usage—from cov-
ering indexes (also known as index-only retrieval) to index
intersection (combining multiple indexes for the same table)
and query execution plans with dynamic index sets [57].
Sorting the search keys prior to B-tree index search seems
to ensure fairly robust query performance [37]. Inasmuch as
such access plans require set operations such as intersection,
g-join serves the purpose; otherwise, source data access in
tables and indexes is not affected by g-join.

Prior research also has investigated join orders in the con-
texts of dynamic programming [63], algebraic transforma-
tions [19, 32, 54], queries with very many joins [44], and
dynamic join reordering [2, 6, 53]. Most of those research
directions and their results are orthogonal to g-join and its
relationship to the traditional join algorithms.

Other research efforts have exploited join algorithms for
specific purposes, e.g., set operations such as an index inter-
section or a covering index join [36], or in specific settings,
e.g., massively parallel query processing [3, 16]. Index oper-
ations (such as index intersection for a conjunction of pred-
icates on a single table) use record identifiers as join keys.
Parallel operations often partition both join inputs on a hash
value calculated from the join keys, effectively adding an
equality predicate on the hash values to the join predicate
specified in the user query. G-join also works for these pur-
poses and in those settings.

Hash values can also speed up local join operations. For
example, a merge join and two sort operations on inter-
national strings can avoid many expensive comparisons if
a hash value is computed for each string prior to the sort
operations and strings are compared only in the case of
equal hash values. The hash function employed can be order-
preserving but that is not truly required.

Finally, hash values can speed up traditional indexes. For
example, a B-tree index with a hash value as leading key
field permits very efficient search based on fast comparisons
as well as interpolation search rather than binary search [27].
Just as importantly for software vendors and users, it pre-
serves all traditional B-tree virtues such as efficient creation
using a sort, efficient maintenance, robust concurrency con-
trol and recovery, etc.

In the following discussion, the two join inputs are called
R and S. Cost calculations may use the functions pages(R)

and rows(R). R used in a cost function means pages(R).
The function keys(R) indicates the number of distinct values
in the join column. The memory allocation is M (pages or
units of I/O) and the maximal fan-in in merge steps as well
as the maximal fan-out in partitioning steps is F . F and M

are equal except for their units and a small difference due
to a few buffers required for asynchronous I/O etc. If M is
around 100 or higher, this difference is not significant and
can usually be ignored.

In addition to calling the two inputs of a single join op-
eration the small and the large inputs, the following text
employs “tiny” for 10s of rows fitting into the CPU cache,
“small” for 1,000s of rows fitting in memory, “medium-
size” for 1,000,000s of rows requiring only a single merge
step in an external merge sort, “large” for 1,000,000,000s
of rows requiring multiple merge steps, and “huge” for
1,000,000,000,000s of rows requiring multiple merge lev-
els, multiple partitioning levels in a recursive hash join, and
multiple levels of nodes in a B-tree index.

2.1 Nested loops join

Nested loops join is both the simplest and the most versa-
tile join algorithm. In its prototypical form, it loops over the
rows of the outer input and, for each of those, loops over the
rows of the inner input in order to find matches. The algo-
rithm is competitive only for very small inputs or if some of
the many optimizations are exploited.

A simple join of two tables may scan the inner input or
search it using an index. A complex join of many tables may
employ multiple levels of nested iteration, i.e., a nested sub-
query within a nested query [25]. For example, a standard
rewriting for universal quantification employs two levels of
nesting. As a specific example, a student who has attended
all available database courses is one for whom there does
not exist an available database course for which there does
not exist an appropriate enrollment record [31]. As a join
algorithm exploiting indexes, nested loops join may also be
used for index-to-index navigation, e.g., when fetching en-
tire rows in a primary index after obtaining appropriate ref-
erences through a search in a secondary index.

Index nested loops join is the superior join algorithm if
the outer input is tiny and the inner input is large and in-

G. Graefe

dexed. The index may be permanent or temporary, e.g., cre-
ated and dropped within the current query execution. Mod-
ern storage devices with very short access latency, e.g., flash
storage, will likely tilt query processing towards index usage
both in selections (index search instead of table scans) and
in joins (index nested loops join instead of merge join and
hash join).

2.1.1 Cost functions

The I/O cost of nested loops join is dominated by searches
in the inner input. In the case of a naïve nested loops join,
the scans can be exceedingly expensive. In the case of in-
dex nested loops join, the index searches require root-to-leaf
searches. If the buffer pool is “warm,” only leaf pages incur
actual I/O costs. Thus, the I/O cost of index nested loops
join can be approximated by the number of searches, i.e.,
the number of records in the outer join input, multiplied by
the cost of a random read operation.

The CPU cost is also dominated by the search in the inner
input. In the case of an index nested loops join relying on a
B-tree index and binary search within each B-tree node, the
number of comparisons can be approximated by log2(N) for
an inner join input with N records. The number of buffer
pool operations in each search is equal to the depth of the
B-tree index.

2.1.2 Variants and optimizations

Early optimizations of naïve nested loops join included
block nested loops join including reverse scans [47] and
balanced memory allocation [39]. Nonetheless, compared to
multiple scans of the inner input, a temporary index might
be more advantageous [67].

There are many further software optimizations to avoid
or speed up I/O in nested loops join with large outer inputs.
Prefetching the B-tree root page and 1 or 2 additional B-tree
layers (and perhaps pinning them in the buffer pool) reduces
each index search to 1–2 I/O operations at most. A batch of
multiple look-ups permits using multiple disks and ordering
disks accesses [57]. A continuous process based on a pri-
ority queue [45] avoids the burst effect. Sorting the entire
outer input limits the cost of nested loops join even for a
large outer input [17, 38]. In this case, the sequence of page
accesses during the index nested loops join is very similar to
that of a merge join [21]. Moreover, sorting the outer input
partially or completely may detect duplicate key values in
the outer input; in the best case, the number of searches in
the index of the inner input is reduced from rows(outer) to
keys(outer).

In order to reduce the CPU effort of index nested loops
join, a cache may retain, for each B-tree level, the highest
key value present in the buffer pool. Seeking from one B-tree

leaf entry to another one may start with the current leaf page,
thus avoiding almost all root-to-leaf searches. Other tech-
niques for the same purpose include interpolation search
[27] and pointer swizzling [58] among index pages in the
buffer pool.

Alternatively, records of the outer input may contain di-
rect pointers to records of the inner input [65], in particu-
lar when the database represents complex objects with en-
forced component relationships or foreign key referential
constraints. Better yet, components of the same object may
be stored together using master-detail clustering, e.g., in-
voices with their line items or even customers with all their
orders, invoices, and all their line items. An implementa-
tion within traditional B-tree indexes [28] can keep the im-
plementation effort moderate and preserve the many oper-
ational advantages of B-trees, e.g., efficient index creation
[56] and robust concurrency control and recovery [29].

In summary, index nested loops join is the algorithm of
choice in many queries. When appropriate software opti-
mizations and modern hardware technologies are employed,
this set of queries goes far beyond the tiny queries common
in transaction processing. Nonetheless, our goal for g-join is
to replace nested loops join, perhaps with the exception of
nested queries not amenable to “flattening” or other appro-
priate query rewrite.

2.2 Merge join and sorting

Given the many variations and optimizations for nested
loops join, maybe merge join is simpler after all. Merge join
relies on both inputs being sorted on their respective join
keys and merges them to find matching join key values. The
inputs may be sorted due to appropriate index scans (e.g.,
“interesting orderings” due to B-tree indexes), prior opera-
tions that produce sorted output (“interesting orderings” due
to in-stream aggregation or merge joins), or sort operations
explicitly included in the query execution plan.

External merge sort is the standard sorting algorithm used
in database systems and in query processing [26]. If sorting
is required, its cost is much higher than the cost of the actual
merge join, and most relevant optimizations apply to sorting
rather than merge join.

2.2.1 Cost functions

The I/O cost of merge join is dominated by the cost of sort-
ing the inputs, if required. The only specific issue is the final
fan-in, i.e., how much memory is dedicated to each of the
two final merge steps during the join phase. Primitive sort
implementations that produce a single sorted file before the
join can be modeled as a final fan-in of 1. If both join inputs
require sorting, their final fan-in ought to be proportional to
the input sizes, ensuring equal merge depth for both inputs
as much as possible.

New algorithms for join and grouping operations

The CPU cost is also dominated by the sort operations.
The number of comparisons in the merge join can be ap-
proximated by the number of records in both inputs, because
one or the other input is advanced by one record in response
to each comparison.

2.2.2 Variants and optimizations

Unsorted inputs and perfectly sorted inputs are the extreme
cases. Intermediate cases exist and are exploited in some
database systems. For example, a prior operation may de-
liver the intermediate query result sorted on fields (a, b) but
the next operation needs it sorted on (a, b, c). In these cases,
the intermediate result can be sorted in segments defined by
unique values of (a, b). If the records from an input sorted
on (a, b) are needed sorted on (b) only, the distinct values of
(a) can be interpreted as identifying run sorted on (b) such
that merely a merge step is required. If a sort order on (b, c)
is needed, the techniques can be combined: distinct values
of (a) identify runs sorted on (b); as these runs are merged,
records are sorted on (c) for each unique value of (b). More
complex variations and combinations of techniques are also
possible.

If temporary runs are held on traditional disks with high
transfer bandwidth but also high access latency, merging af-
ter initial run generation can be optimized by employing
large units of I/O [35, 62]. With memory contention by con-
current virtual machines, applications, connections, queries,
threads, and query operations, large inputs may require mul-
tiple merge steps. With optimized merge plans, the number
of merge levels might not be uniform for all records [26].
A logarithmic function without rounding is not a precise but
a reasonable approximation of the merge depth.

If a merge join requires an explicit sort operation for both
inputs, their final (or only) merge steps can pipeline their re-
sults directly into the join logic. In this case, the sort oper-
ations compete with each other (and the join) for memory.
The optimal division of memory assigns memory in propor-
tion to the input sizes [22]. For example, if one input is much
larger than the other one, the small input might be merged to
a single sorted run and all available memory is assigned to
the large input during the merge step, thus avoiding a com-
plete merge level for the large input. Thus, in this limited
way, merge join is able to take advantage of differences in
input sizes, although not as much as hash join.

Just as index nested loops join with a sorted outer is sim-
ilar to merge join, merge join can be similar to index nested
loops join. Instead of scanning forward after comparing un-
equal keys of the two join inputs, merge join can also search
for a matching key. In particular for two inputs of very dif-
ferent sizes, skipping forward can save many comparisons.
For example, if the two sorted join inputs are organized in
pages, the merge join can skip over an entire page with a

single comparison. If the issue is not the difference in input
sizes but two very different key value distributions, this op-
timization may apply in both directions, giving rise to the
name zigzag merge join [1]. If one or both inputs of the
merge join have ordered indexes such as B-trees, skipping
forward can be faster than scanning forward by orders of
magnitude.

Many sorting techniques and optimizations have been
explored in the context of database query processing [26].
Important in the present context is run generation by re-
placement selection [50], i.e., a continuous process consum-
ing unsorted input and producing initial runs, keeping the
workspace in memory full at all times, organizing records
in memory in a priority queue, and producing initial runs on
average twice the size of memory, i.e., 2M . With first and
last runs of smaller size, R/(2M) + 1 initial runs should be
expected for an input in random order and of size R. The
sizes of first and last runs together are also about 2M .

Priority queues are used in multiple roles in an efficient
external merge sort: in addition to run generation and merg-
ing records, a merge step may forecast the run most urgently
needing asynchronous read-ahead (with one entry in the pri-
ority queue for each run being merged), and merge plan-
ning may choose which runs to assign to the next merge step
(with one entry in the priority queue for each run waiting to
be merged).

2.3 Hash join

Three separate research efforts invented and developed hash
join algorithms in the 1980s [7, 14, 15, 20, 48, 60, 64]. Since
then, hash join has been considered the best join algorithm
to exploit large memory and to process unsorted inputs. This
is due to the fact that a huge input can be joined without
writing and reading on temporary storage if the other join
input (organized in a hash table) fits in memory. Usually,
the inputs of hash join are called “build” and “probe” inputs
rather than “outer” and “inner” inputs. Query optimization
attempts to assign the “build” role to the small input.

If the small input nearly fits in memory, hybrid hash join
avoids much or most I/O for the large input. An in-memory
hash table is built with records of the small input and probed
with records of the large input. If both inputs are large, the
two inputs are partitioned into pairs of overflow files. The
fan-out is limited by the number of output buffers quite sim-
ilar to the limit on the merge fan-in in external merge sort.
For huge inputs, multiple levels of partitioning may be re-
quired. Only the smaller input determines the number of par-
titioning levels, independent of the size of the larger input.
Thus, hash join exploits the difference in the sizes of its in-
puts.

G. Graefe

2.3.1 Cost functions

The I/O cost of hash join is usually dominated by the cost
to obtain the inputs, often by table scans. The I/O within the
hash join depends on the volume of overflow during parti-
tioning. Hybrid hash join, for example, spills only parts of
its inputs to temporary overflow files. Recursive hash join,
if required, spills each record multiple times. Using large
units of I/O strikes a balance between I/O access times and
transfer times, quite similar to external merge sort.

The CPU cost of hash join also depends heavily on the
overflow volume, plus building and probing an in-memory
hash table with each input record.

2.3.2 Variants and optimizations

If it is not known a priori which of the join inputs is smaller,
role reversal after the first partitioning step ensures minimal
overall partitioning effort. In addition to role reversal, an-
other optimization often associated with hash join is bit vec-
tor filtering. Key values in the build input records determine
which bits are set to ‘1’ and probe input records that hash to
‘0’ bits are immediately discarded, potentially saving most
of the I/O cost for the large input [14].

Other optimizations include integration of aggregation
(grouping) and join—construction of the hash table from the
build input can identify groups and aggregate them as appro-
priate, i.e., compute counts and sums. This applies only to
the build input, not the probe input. Role reversal interferes
with this variant of hash join.

Many queries use the same columns for grouping and
join, because both usually focus on foreign key columns.
For example, a many-to-one relationship such as invoices
and their line items suggests queries that combine invoice
attributes with summaries of line items. Moreover, aggrega-
tion operations often are “pushed down” [11] during query
optimization, resulting in a query execution plan with a join
following an aggregation on the same columns—the ideal
situation for a hash join with integrated aggregation.

Another case elegantly addressed by a hash join with in-
tegrated aggregation is matching with long “in” lists, e.g.,
“from T where T.a in (@v1, @v2, . . . , @v1024)”. The val-
ues with “@” indicate parameters supplied by the applica-
tion at run-time. Some database applications generate such
queries with enormously long lists. The traditional execu-
tion algorithm stores these values in an array and scans over
the entire array for each row in table T. A more efficient
implementation puts them into a hash table after removing
duplicate values from the list. Duplicate removal is a form
of aggregation, and the look-up in the hash table is a hash
join.

Finally, teams of hash aggregation and hash join opera-
tions are quite similar in effect to multiple merge join oper-
ations with interesting orderings [36, 46]. Just as interesting

orderings avoid the cost of sorting intermediate results, hash
teams avoid partitioning intermediate results.

2.4 Comments on prior join algorithms

In addition to the detailed description of the traditional join
algorithms and many of their optimizations, two comments
seem pertinent to a new join algorithm.

First, the traditional wisdom seems to be that the larger
the database and its tables, the larger the need for an effi-
cient set-based join algorithm such as hash join. The follow-
ing observation about database growth and scalability con-
tradicts that wisdom, however. If the large input table dou-
bles in size, query execution time doubles for merge join and
hash join, whereas it barely grows for index nested loops
join. Thus, if index creation and maintenance can be opti-
mized, index nested loops join is the join algorithm of choice
in large databases. Flash storage amplifies this argument due
to its excellent access latency. Therefore, a new join algo-
rithm must mirror the scalability of all three traditional join
algorithms.

Second, the traditional mode of operation of index nested
loops join assumes a small outer input and a large, indexed,
inner input. If, on the other hand, the small input and its
index fits in memory, index nested loops join can employ the
large input as outer input. Some optimizations of the index
seem appropriate, e.g., pointer swizzling and interpolation
search as mentioned above. Interestingly, the resulting join
algorithm is somewhat similar to an in-memory hash join.
G-join exploits a similar mode of operation, as described
later.

2.5 Sort-based aggregation

Early work on implementation techniques for query process-
ing in relational databases assumed that aggregation requires
an input sorted on the grouping columns. Once the input
sorted, the cost of the actual aggregation is minimal or even
trivial. Thus, sorting the input was usually the dominant cost
of aggregation operations.

Over time, researchers and developers realized that
many optimizations apply, e.g., early duplicate removal dur-
ing sorting [5], exploiting functional dependencies among
database columns [66] and reducing the sort effort if an in-
put is already sorted on some but not all required ordering
fields.

2.6 Nested loops aggregation

In order to avoid the cost of sorting, some relational products
employ an index holding partially aggregated records. For
example, for the SQL query “select dept-id, average (salary)
from employee group by dept-id,” the index contains de-
partment identifiers as key plus sum and count of salaries

New algorithms for join and grouping operations

encountered so far in the input. Early Sybase systems, for
example, use a B-tree index for aggregation operations.

Ideally, the buffer pool can retain this temporary index
throughout the operation, such that no I/O is required for
the aggregation output. When the output is larger than the
available memory allocation, index nested loops aggregation
relies on the buffer pool and its replacement policy.

2.7 Hash aggregation

Instead of a B-tree index in shared temporary database space
and hopefully in the buffer pool, hash aggregation employs
an in-memory, thread-private hash table. When the output
size exceeds the memory allocation, hash aggregation relies
on partitioning just like hash join. Again, hash partitioning is
akin to a distribution sort on hash values instead of standard
column values.

For output sizes only slightly larger than the memory al-
location, hybrid hashing can be employed. The in-memory
hash table retains either all records belonging to specific
hash buckets or the records with the highest consumption
rate, i.e., the records that represent the largest groups within
the input and that thus absorb the most input records. This
latter variant is not a straight distribution sort but akin to a
“top” operation with an in-memory priority queue. A pos-
sible implementation approximates the consumption rate by
tracking, for each record in the hash table, the most recent
(or 2nd- or 3rd-most recent) aggregation. Whenever a re-
placement victim is required, the record is chosen that has
not absorbed an input record for the longest time.

2.8 Summary of prior work

In summary, database query processing relies on matching
algorithms for many unary and binary operations. The unary
operations include grouping (for “group by” queries) and
duplicate removal. The binary operations include inner and
outer joins, semi joins, and set operations such as intersec-
tion and difference. For unary operations, there are three tra-
ditional algorithms based on sorting, hashing (partitioning),
and temporary indexes. Similarly, there are sort-based, hash-
based, and index-based join algorithms. One of the tasks of
compile-time query optimization is to choose the correct al-
gorithm for each query and each operation based on esti-
mated sizes of intermediate query results and anticipated key
value distributions.

3 The new join algorithm

G-join is a new algorithm; it is not a run-time switch be-
tween algorithms, e.g., the traditional join algorithms. It is
based on sorted data and thus can exploit sorted data stored

in B-tree indexes as well as sorted intermediate results from
earlier operations in a query execution plan. For unsorted in-
puts, it employs run generation very similarly to a traditional
external merge sort. Thereafter, it avoids most or all of the
merge steps in a traditional merge sort. The required effort,
in particular the I/O effort, is similar to that of hash join, be-
cause the behavior and cost function of recursive and hybrid
hash join have guided the algorithm design for unsorted in-
puts. Nonetheless, g-join is based on merge sort and is not a
variant of hash join. For example, it does not rely partition-
ing using an order-preserving hash function. Delaying all
details to subsequent sections, the basic ideas are as follows.

For unsorted inputs, run generation produces runs like an
external merge sort, but merging these runs can be omitted
in most cases. With a fixed memory allocation, all initial run
sizes are about equal. Any difference in the sizes of the two
join inputs is reflected in the count of runs for each input,
not in the sizes of runs.

With sufficient memory and a sufficiently small num-
ber of runs from the smaller input, join processing follows
roughly (but not precisely) the sort order of join key val-
ues. A buffer pool holds pages of runs from the small in-
put. Pages with higher keys successively replace pages with
lower keys. A single buffer frame holds pages of runs from
the large input (one page at a time) while such pages are
joined with the pages in the buffer pool. In other words, dur-
ing join processing, most memory is dedicated to the small
input and only a single page is dedicated to the large in-
put. With respect to memory management, the buffer pool is
reminiscent of the in-memory hash table in a hash join, but
its contents turns over incrementally in the order of join key
values.

If merging is required, the merge depth is kept equal for
both inputs. This is rather similar to the recursion depth of
recursive hash join and quite different from a merge join
with two external merge sorts for inputs of different sizes.
For fractional merge depths—similar to hybrid hash join—
memory is divided into two segments, one used for imme-
diate join processing and one used as buffers for temporary
files. In this way, g-join requires memory and I/O for tem-
porary files in very similar amounts as recursive and hybrid
hash join. Even bit vector filtering and role reversal are pos-
sible, as are integration of aggregation and join operations.

If one or both inputs are sorted, run generation and merg-
ing can be omitted. With two sorted inputs, the algorithm
“naturally simplifies” to the logic of a traditional merge join.
If the small input is sorted, the buffer pool holds only very
few pages, very similar to the “back-up” logic in merge join
with duplicate key values. If the large input arrives sorted,
g-join joins its pages with the buffer pool contents by strictly
increasing join key values and the join output is also strictly
sorted.

If one or both of the inputs is indexed, g-join exploits
available indexes in its merge logic. If one input is tiny and

G. Graefe

the other input is huge, the merge logic skips over most data
pages in the huge input, thus mimicking traditional index
nested loops join. If the small input is indexed and the index
can be cached in memory, there is no need for sorting the
large input and the algorithm behaves rather like hash join
and like the non-traditional mode of index nested loops join.

4 Unsorted inputs

Many of the algorithm’s details can best be explained case
by case. This section focuses on inner joins of two unsorted,
non-indexed inputs with practically no duplicate key val-
ues, with uniform key value distributions (neither duplicate
skew nor distribution skew), and with pages holding multi-
ple records and thus non-trivial key ranges. Later sections
relax these assumptions.

As the size of the small input is crucial to achieving join
performance similar to recursive and hybrid hash join for
unsorted inputs, the discussion divides cases by the size of
the small input relative to the memory size. In all cases, the
large input may be larger than the small input by a few per-
cent or by orders of magnitude. The core algorithm that most
other cases depend on is covered in Sect. 4.2.

In order to explain g-join step-by-step, Sects. 4.1 through
4.5 assume accurate a priori knowledge of the size of in-
put R. Section 4.6 relaxes this assumption.

The following descriptions assume that compile-time
query optimization anticipated that input R will be smaller
than input S. Therefore, input R is consumed first and drives
memory allocation, run generation, and merging.

During merge steps, read operations in run files require
random I/O. Large units of I/O (multiple pages) are a well-
known optimization for external merge sort and for parti-
tioning, e.g., during hash join and hash aggregation. The
same optimization also applies to the runs and to the merge
operations described in Sect. 4.2.1.

4.1 Case R ≤ M

The simplest case is a small input that fits in memory, i.e.,
R ≤ M . No run generation is required in this case. Instead,
g-join retains R in memory in an indexed organization (e.g.,
a hash table or a B-tree), and then processes the pages of S
one at a time.

With all temporary files avoided, the I/O cost of g-join in
this case is equal to that of traditional in-memory hash join.
When using the same in-memory data structure, the CPU
effort of the two join algorithms is also the same.

4.2 Case R = F × M

The next case is the one in which Grace hash join [20] and
hybrid hash join operate in the same way, with F pairs of

overflow files, no immediate join processing during the ini-
tial partitioning step, and all memory required during all
overflow resolution steps.

In this case, g-join creates initial runs from both inputs
R and S. With replacement selection for run generation, the
number of runs from input R is F/2+1. The number of runs
from input S is larger by a factor S/R. Even if the number
of runs from input S is much larger than the maximal merge
fan-in F , no merging is required. Instead, inputs R and S are
joined immediately from these runs. Practically all memory
is dedicated to a buffer pool for pages of runs from input R.
Input S requires only a single buffer frame as only one page
at a time is joined with the contents of the buffer pool. Ad-
ditional buffer frames might be used as output buffer and for
asynchronous read-ahead and write-behind, but those are ig-
nored in the cost calculations here.

4.2.1 Page operations

Careful scheduling governs read operations in runs from in-
puts R and S. This scheduling is the core technique that en-
ables the new, generalized join and aggregation algorithms,
discussed here for the case of join algorithms for two un-
sorted inputs.

At all times, the buffer pool holds some key range of each
run from input R. The intersection of those key ranges is the
“immediate join key range.” If the key range in a page from
input S falls within the immediate join key range, the page
is eligible for immediate join processing.

The schedule focuses on using, at all times, the minimal
buffer pool allocation for pages of the small input R. It grows
its memory allocation only when necessary in order to pro-
cess pages from the large input S one at a time, shrinks the
buffer pool as quickly as possible, and sequences pages from
the large input S for minimal memory requirements.

The minimal memory allocation for the buffer pool re-
quires one page for each run from input R. Its maximal
memory allocation depends on key value distributions in
the inputs, i.e., distribution skew and duplication skew. With
uniform key value distributions and moderate amounts of
duplicate key values, about two pages for each run from in-
put R should suffice. Two pages for each of F/2 + 1 runs
amount to M pages. In other words, g-join can perform the
join immediately after run generation in this case, indepen-
dently of the size of input S. Thus, if indeed two pages per
run from input R suffice, memory needs and I/O effort of
g-join match those of hash join.

Algorithm overview Figure 1 illustrates the core algorithm
of g-join. Various pages (double-ended arrows) from various
runs cover some sub-range of the domain of join key values
(dotted horizontal arrow). Some pages of runs from input R
are resident in the buffer pool (solid arrows) whereas some

New algorithms for join and grouping operations

Fig. 1 Runs, pages, buffer pool, and the immediate join key range

pages have already been expelled or not yet been loaded
(dashed arrows). The pages in the buffer pool define the im-
mediate join key range (dotted vertical lines). It is the inter-
section of key ranges of all runs from input R. Some pages
of runs from input S are covered by the immediate join key
range (solid arrows) whereas some have already been joined
or cannot be joined yet (dashed arrows). Differently from
the diagram, there usually are more runs from input S than
from input R. Again, at any one time, memory holds multi-
ple pages of each run from input R but only one page from
one of the runs from input S. Thus, even if there are many
more pages from input S than from input R, the memory re-
quirements do not change. The letters A through D refer to
the priority queues explained below.

In Fig. 1, the buffer pool contains 2 pages each from runs
1 and 3 of input R and 3 pages from run 2. In the illustrated
situation, the next action joins a page from run 2 of input S
with the pages in the buffer pool, whereupon the buffer pool
may shrink by a page from run 2 of input R.

Data structures The immediate join key range expands
and contracts as it moves through the domain. Multiple pri-
ority queues guide the schedule of page movements. These
priority queues require modifications when the buffer pool
reads or drops pages of input R and when a page of S
joins with the pages in the buffer pool. All priority queues
are sorted in ascending order such that top entry holds the
smallest key value. Runs are represented in these priority
queues until processed to completion. The priority queues
are named A through D:

A. This priority queue guides how the buffer pool grows.
Each run from the small input R has one entry in this
priority queue at all times. Its top entry indicates next
page to load into memory. The sort key is the high key
of the newest page in the buffer pool for a run. In Fig. 1,
the top entry of this priority queue would be run 1 of
input R, the source of the next page to be loaded into the
buffer pool (see label “A” in Fig. 1).

B. This priority queue guides how the buffer pool shrinks.
Each run from input R has one entry in this priority
queue at all times. Its top entry indicates the next page
to drop from memory. The sort key is the high key of the

oldest page in the buffer pool for a run. In Fig. 1, the top
entry of this priority queue would be run 2 of input R,
because the buffer pool will shrink next by dropping a
page of that run (see label “B” in Fig. 1).

C. This priority queue guides how the buffer pool shrinks.
Each run from input S has an entry in this priority queue.
Its top entry indicates the next page to join from the large
input S. The sort key is the low key value in the next page
on disk. In Fig. 1, the top of this priority queue would be
run 2 of input S, because joining the next page of that
run will permit shrinking the buffer pool (see label “C”
in Fig. 1).

D. This priority queue guides how the buffer pool grows.
Each run from input S has an entry in this priority queue.
Its top entry indicates the next page to schedule from in-
put S. The sort key is the high key value in the next page
on disk. In Fig. 1, the top entry of this priority queue
would be run 2 of input S, because its next page can be
joined with the least growth of the buffer pool (see label
“D” in Fig. 1).

Priority queue A is similar in function and size (F/2 en-
tries) to a priority queue guiding page prefetch (“forecast-
ing”) in a traditional external merge sort. Priority queue B
could have an entry for each page in memory rather than for
each run from input R. In that case, it would be similar in
function and size (M entries) to a priority queue used for
page replacement in a buffer pool. Priority queues C and D
are similar in size (S/(2M) + 1 entries) to that of a prior-
ity queue guiding a traditional merge sort to merge in each
step the smallest ones among all remaining runs, which is
the fastest way to reduce the number of runs.

An alternative to priority queue B merges individual
records of input R, which is similar to a traditional merge
sort of input R producing a single sorted stream. While
records may remain in pages in the buffer pool, the sorted
stream of record pointers is captured as a in-memory B-tree
index, similar to efficient creation of B-tree indexes from
sorted streams. The key range represented in the in-memory
B-tree index is the immediate join key range, which is
bounded by the top entries in priority queues A and B. The
buffer pool may drop a page of input R when the index no
longer contains any references to the page.

Priority queues C and D employ information from pages
not yet read during the join process. With a very moder-
ate loss in predictive precision, priority queue C can use the
highest key value already seen instead of the lowest future
key value.

Finally, it is possible to omit priority queue D and sched-
ule pages of input S entirely based on priority queue C.
The algorithm without priority queue D does not require a
larger maximal buffer pool, although it may require a large
buffer pool over longer periods. Priority queue D provides
guidance required for growing the buffer pool as late or as

G. Graefe

slowly as possible, but it cannot avoid buffer pool growth
or reduce the maximal buffer pool size. Priority queue D re-
quires information about the maximal key value in pages not
yet read; this is possible only if external merge sort saves its
runs in an appropriate format, e.g., B-trees [24].

Algorithm The algorithm initializes the buffer pool and
priority queues A and B with the first page of each run from
input R. Priority queues C and D initially hold information
about the first page of each run from input S. The algorithm
continues step by step until all pages of all runs from in-
put S have been joined, i.e., priority queues C and D are
both empty.

Each step tests the top entries of priority queues C and
then D whether they can be joined immediately. If so, it
reads the appropriate page of input S and joins it to the pages
of input R in the buffer pool. It then replaces the page of in-
put S in priority queues C and D with the next page from the
same run from input S. If the end of the run is reached, the
run is removed from priority queues C and D. If the replaced
page used to be the top entry of priority queue C, the buffer
pool may drop some pages, guided by priority queue B.

The algorithm variant that merges individual records into
an in-memory index may drop low key values in the index up
to the top key value in priority queue C, as priority queue C
indicates the lowest key value of input S that might still re-
quire join processing.

Otherwise (if the top entries of priority queues C and D
cannot by joined immediately), the buffer pool grows
by loading some additional pages from input R. Priority
queue A guides this growth until the top entry in priority
queue D can be joined immediately.

The overall complexity of the priority queue operations
is modest: each page in all runs from inputs R and S goes
through precisely two priority queues. Replace and erase op-
erations are required in these priority queues. Tree-of-loser
priority queues [49] can implement these operations with a
single leaf-to-root pass.

The actual I/O operations as well as operations on indi-
vidual records will likely exceed the CPU cost for the pri-
ority queues. Operations on individual records include in-
sertion and deletion in an in-memory index when pages of
input R enter and exit the buffer pool as well as search oper-
ations in this index to match records of input S. These inser-
tions, deletions, and searches are similar in cost and com-
plexity to the equivalent operations in a hash join and its
in-memory hash table.

First and last runs During run generation, the first and last
runs from each input may differ from the runs produced by
steady-state run generation. The most significant issue is a
small last run in the large input. For example, run genera-
tion with read-sort-write cycles and in-memory algorithms

such as quicksort can produce a last run much smaller than
memory and thus all previous runs. A small run and thus
few data pages imply a large key range per page. During
join processing, a page from the large input with a large key
range imposes a large buffer pool requirement for the small
input.

Continuous run generation with replacement selection al-
leviates the issue but does not solve it entirely. Even when
replacement selection is employed, the first and last runs
have, on average, larger key ranges per page than the runs
produced by steady-state replacement selection. The first
run is simply smaller than twice the size of memory; the
last run covers only an initial part of the key range and is
limited to the memory size.

A straightforward approach merges the first and last runs
prior to join processing. Another solution dedicates an addi-
tional buffer page to the first and last runs of the large input.
In that solution, the large join input requires a total of three
memory pages rather than one as discussed so far. One of
the additional memory pages remains dedicated to the first
run. The other additional memory page serves the last run
until it ends and then serves the second-to-last run. In the
key range covered by the last run, the second-to-last run is
similar to runs produced during steady-state run generation;
its key range per page grows only after the end of the un-
sorted input had been reached. Join processing for the con-
tents of those dedicated pages proceeds in multiple steps or
key ranges, as appropriate for the contents of the buffer pool
from the small input and its incremental progress through
the domain of join keys.

Alternatively, a single memory page for the large join
input remains possible if pages with particularly large key
ranges are read repeatedly, i.e., each time another range of
join key values can be joined with the buffer pool contents.
More generally, a small buffer pool of fixed size, e.g., 3
pages, could be managed for the large input in order to min-
imize the buffer pool requirements for the small input. Even
more generally, a single buffer pool for runs from both the
small and large inputs could be managed for minimal buffer
pool and I/O requirements. The detailed design, its computa-
tional cost and its advantages are not yet known. The buffer
pool and I/O requirements should be less than those of any
rigid scheme, e.g., one or three pages for the large join input.

Prototype implementation Our first prototype implemen-
tation of the g-join logic employs priority queue B to guide
shrinking the buffer pool. It does not merge key values
into an in-memory B-tree index. The prototype has run-
time switches that control whether or not priority queue D is
used and whether priority queue C is sorted on the highest
value already seen or the lowest value not yet seen. Prior-
ity queue D is not used in any of the experiments reported
below.

New algorithms for join and grouping operations

For a uniform distribution of join key values and a uni-
form distribution of run sizes, it requires about two pages of
input R, as discussed in detail later. Two inputs with 100 and
900 runs of 1,000 pages, i.e., a total of 1,000,000 pages, can
be processed in the priority queues in less than 1 second us-
ing a laptop with a 2.8 GHz CPU. Clearly, 1,000,000 I/O op-
erations take more time by 3–4 orders of magnitude. Main-
tenance of the priority queues takes a negligible amount of
time.

4.2.2 Record operations

As pages of runs from input R enter and exit the buffer pool,
their records must be indexed in order to permit fast probing
with join key values from records of input S.

A local index per page of input R is not efficient, as each
record of input S would need to probe as many indexes as
there are pages in the buffer pool. This can substantially in-
crease the cost of probing compared to a global index for all
records in the buffer pool.

A global index must support not only insertions but also
deletions. After a new page has been read into the buffer
pool, its records are inserted into the global index; before
a page is dropped from the buffer pool, its records are re-
moved from the global index.

The implementation of the global index can use a hash ta-
ble or an ordered index such as a B-tree. B-tree maintenance
can be very efficient if the B-tree contains only records in
the key range eligible for immediate join processing. For ef-
ficient insertion, the runs from input R can be merged (as in
a traditional merge sort) and then appended to the B-tree in-
dex. For efficient deletion, entire leaf pages can be removed
from the B-tree.

On the other hand, a hash table may support more effi-
cient in-memory join processing than a B-tree index. Even
if every record in input R eventually joins with some records
of input S, each page of input S joins with only a few records
of input R. Thus, a lot of skipping and searching is required
in a global B-tree index, whether the actual in-memory join
algorithm is a merge join, an index nested loops join, or a
zigzag merge join.

Hash table implementations with efficient insertion and
deletion therefore seem the most appropriate data structure
for in-memory join processing, i.e., the buffer pool with
records from input R with individual pages of runs from in-
put S. Even a hash table permits bulk deletion or recycling
of records based on the low boundary of immediate join key
range.

4.3 Case M < R < F × M

This case falls between the prior two cases, i.e., the case in
which hybrid hash join shines. During the initial partition-
ing step of hybrid hash join, some memory serves as out-
put buffers for the partition overflow files and some memory

holds a hash table and thus enables immediate join process-
ing. If the small input is only slightly larger than the avail-
able memory allocation, most of the join result is computed
during the initial partitioning step and only a small frac-
tion of both join inputs incurs I/O costs. If the small input
is much larger than the available memory allocation, hardly
any join result is computed immediately and a large fraction
of both join inputs spills to overflow partitions.

G-join also employs a hybrid of two algorithms. It di-
vides memory among them and employs the same division
of memory as hybrid hash join. A fraction of memory equal
to the size of the hash table in hybrid hash join enables im-
mediate join processing as in Sect. 4.1. Thus, while con-
suming the join inputs for the first time, g-join computes the
same fraction of the join result as hybrid hash join. The re-
maining memory enables run generation quite similarly to
the algorithm of Sect. 4.2.

The less memory run generation uses, the smaller the re-
sulting runs are. The goal is to produce F/2 runs from in-
put R, because the algorithm of Sect. 4.2 can process F/2
runs in a single step. Interestingly, the required formulas for
the memory division are equal in hybrid hash join and g-join.

Specifically, hybrid hash join requires at least K overflow
partitions and output buffers, with K derived as follows. K

partitions can hold K × M pages from input R. This mem-
ory allocation leaves M − K pages for the hash table and
immediate join processing. In order to process all input in a
single step, input R must fit within the hash table plus these
partitions, i.e., K must satisfy R ≤ (M − K) + K × M .
Solving for K gives K ≥ (R − M) ÷ (M − 1) or K =
ceiling((R − M) ÷ (M − 1)).

G-join uses the same division of memory as hybrid hash
join. Immediate join processing uses M − K pages and K

pages are used for preparation of temporary files. In g-join,
these pages serve as workspace for run generation. Thus,
R − (M − K) pages are the input to run generation, with
R − (M − K) ≤ K × M because R ≤ (M − K) + K × M .

With replacement selection using a workspace of K

pages, the average run size is 2K. The resulting count of runs
is (K × M)/(2K) = M/2. This is precisely the number of
runs from the smaller input R that can be processed by the
algorithm described in Sect. 4.2.

As in hybrid hash join, immediate in-memory join pro-
cessing must be assigned a specific set of key values. In
hybrid hash join, an appropriate range of hash values is as-
signed to the in-memory partition. G-join can employ a simi-
lar hash function or it can simply retain the lowest key values
from input R. For the latter variant, the required data struc-
ture and algorithm is very similar to that of an in-memory
“top” algorithm [8, 9], i.e., a priority queue. This design
choice is best with respect to producing sorted output suit-
able for the next operation in the query execution plan.

While g-join consumes input R, it employs a priority
queue to determine the key range eligible for immediate

G. Graefe

join processing. While g-join consumes input S, it employs
a hash table for join processing. The hash table contains pre-
cisely those records that remained in the priority queue after
consuming input R.

In summary, g-join running in hybrid mode divides mem-
ory like hybrid hash join, retains the same fraction of the
smaller input R in memory, performs the operations required
for in-memory just as efficiently as hybrid hash join, and
produces nearly sorted output.

4.4 Case R = F 2 × M

In this case, hash join requires precisely two partitioning lev-
els. Assuming a perfectly uniform distribution of hash val-
ues, two partitioning levels with fan-out F produce overflow
files from input R equal in size to the available memory, en-
abling in-memory hash join for each partition. Suitable over-
flow partitions from input S require the same two partition-
ing levels, independent of the size of input S and its partition
files.

G-join similarly moves each input record through two
temporary files. After run generation produces R ÷ (2M) =
(F 2 × M) ÷ (2M) = F 2/2 initial runs for input R, a single
merge level with merge fan-in F reduces the count of runs to
F/2. Input S also goes through two levels, namely run gen-
eration and one level of merging. Thereafter, the algorithm
of Sect. 4.2 applies, independent of the size of input S and
its number of remaining run files.

4.5 Case F × M < R < F 2 × M

In this case, a hash join requires more than one partitioning
level but less than two full partitioning levels. The partial
level is realized by hybrid hash join when joining partitions
produced by the initial partitioning step.

G-join first aims to produce F 2/2 runs from input R by
dividing memory similar to the algorithm in Sect. 4.3. If the
size of R is close F × M , most memory is used for imme-
diate join processing during this phase. If the size of R is
close to F 2 × M , very little memory is used for immedi-
ate join processing and most memory is used as workspace
for run generation. More specifically, the calculation K =
ceiling((R − M) ÷ (M − 1)) of Sect. 4.3 is replaced with
K = ceiling((R/F − M) ÷ (M − 1)) to account for one ad-
ditional merge level.

After this initial hybrid step, g-join merges all runs once,
reducing the number of runs from input R by a factor of F

to F/2. All runs from input S are also merged once with a
fan-in F . The final step applies the algorithm of Sect. 4.2 to
the remaining runs.

4.6 The general case

The preceding descriptions assume precise a priori knowl-
edge of the size of input R. Dropping this assumption, the

following discussion assumes that actual run-time sizes are
not known until the inputs have been consumed by the join
algorithm, that input R is consumed before input S, and that
R is smaller than S. Should S be smaller than R, role reversal
is possible after run generation for both inputs but it is not
discussed further.

In order to calibrate expectations, it is worthwhile to con-
sider the behavior of hybrid hash join under these assump-
tions. The preceding discussions of hybrid hash join assume
perfectly uniform distributions of hash values. For a per-
fect assignment of hash values to the in-memory hash table
and to the overflow partitions, hybrid hash join also requires
prior knowledge of the desired size of the in-memory hash
table, i.e., of the precise size of the build input. Without this
knowledge, hash join loses some degree of efficiency. Dif-
ferent designs and implementations of hash join suffer in
different places. In all cases, dynamic changes in the size
of the in-memory hash table and its hash buckets are quite
complex.

G-join, with two unsorted inputs of unknown sizes, first
consumes the input anticipated to be the smaller one. If that
input R fits in memory (case R ≤ M), run generation for in-
put S can be avoided entirely, and g-join performs similarly
to an in-memory hash join.

Otherwise, the algorithm divides memory between im-
mediate join processing and run generation. With an un-
known input size, the best current estimate is used. This es-
timate may change over time, and the memory allocation is
adjusted accordingly. Note that such an adjustment is easily
possible in g-join.

The most conservative variant of g-join prepares for two
huge inputs, i.e., run generation uses all available memory.
If the first input turns out to be small and fit in memory, run
generation for the second input is skipped in favor of im-
mediate join processing. Otherwise, run generation for both
inputs is completed. In this variant, g-join performs rather
like Grace hash join [20] without dynamic de-staging [60].

The memory allocation at the end of consuming input R
is preserved throughout run generation and immediate join
processing for input S. After run generation for input S, if
one of the two inputs has produced no more than F/2 runs,
final join processing can commence immediately without
any intermediate merge steps.

Otherwise, runs from the smaller input are merged until
F/2 runs remain. Each merge step merges the smallest re-
maining runs, which reduces the number of remaining runs
with the least effort [49]. Due to the effects of replacement
selection, this will most likely affect the first and last initial
runs, because the sizes of all other runs tend to be similar to
the sizes of these two runs together. If run generation pro-
duces precisely F/2 + 1 runs, merging the first and last runs
produces F/2 runs of similar size.

The merge policy also attempts to minimize the size of
the largest run of input R left for final join processing. Thus,

New algorithms for join and grouping operations

it might be useful to perform multiple merge steps with mod-
erate fan-in rather than one merge step with maximal fan-
in, even if doing so requires merging slightly more than the
minimal data volume.

Next, g-join merges runs from the larger input. Again,
each merge step merges the smallest remaining runs. Even
with no other merge steps, it might be useful to merge the
first run and the last run produced during run generation. In
fact, it is often possible to merge the first and last runs imme-
diately after the end of the input, i.e., while the last run is be-
ing formed. Merging continues until the smallest remaining
run is at least as large as the largest remaining run from the
smaller input. For unsorted inputs, this stopping condition
leads to equal merge depth for both inputs. For join inputs
of very different sizes, this is a crucial performance advan-
tage of g-join when compared to merge join, very similar to
the main advantage of hash join over merge join.

The crucial aspect is not the count of runs but their sizes.
Ideally, the runs from input S should be of similar size as the
runs from input R. More specifically, the smallest run of in-
put S should be at least as large as the largest run of input R.
Assuming reasonably uniform distributions of join key val-
ues, this ensures that a buffer pool of M pages suffices to
join F/2 runs from input R with any number of runs from
input S, which is the final step in g-join for unsorted inputs
of unknown size.

4.7 Summary for unsorted inputs

In summary, g-join processes two unsorted inputs about as
efficiently as recursive hybrid hash join. This is true for in-
put sizes from tiny to huge and for both known and unknown
input sizes. In particular, g-join exploits inputs of very dif-
ferent sizes by limiting the merge depth for both inputs to
that required by the smaller input, quite similar to the re-
cursion depth in hash join. Moreover, g-join is able to divide
memory between immediate join processing and preparation
of temporary files, very similar to hybrid hash join in both
memory allocation and performance effects.

G-join is based on sorting its inputs rather than on hash
partitioning. It even produces the join result roughly in
sorted order such that it might be useful in subsequent op-
erations within the query execution plan. This and similar
questions are discussed in the following section, and the is-
sue whether g-join can substitute for the traditional join al-
gorithms is considered thereafter.

5 The usual questions

This section discusses dynamic memory allocation, mem-
ory hierarchies, integrity constraints, partial and incidental
sort orders in the inputs, skew in the distribution of join key

values, binary operations of the relational algebra other than
inner join, unary operations such as duplicate elimination,
algorithm variants for early results, complex queries with
multiple join operations, and parallel query execution.

5.1 Skew

Skew can affect the performance of g-join in several ways.
For example, extreme duplication of a single key value in the
small input may temporarily force a very large buffer pool.
A temporary file might be required, comparable to a buffer
pool in virtual memory rather than real memory. In those ex-
treme cases, both hash join and merge join effectively resort
to nested loops join, usually using some form of temporary
file and repeated scans.

In general, a buffer pool extended by virtual memory or
an equivalent technique is one of two “water proof” methods
for dealing with extreme cases of skew. The other one re-
duces both inputs R and S to a single run and then performs
a merge join. Short of these methods, however, a variety of
techniques may reduce the impact of skew on the perfor-
mance of g-join. The following describes some of those.

Run generation may gather some statistics about the
range and distribution of key values in each run. If skew is
an issue, the merge step may process inputs R and S just a bit
further than discussed so far. As a result, input R will have
fewer than F/2 runs remaining and the available memory
allocation can support more than two buffer pool pages per
run. Input S will have larger runs with a smaller key range
per page, thus requiring fewer pages of input R in the buffer
pool during join processing.

Even in the case of uniform distributions of join key val-
ues, merging runs from input S until the smallest run from
input S is twice as large or even larger than the largest run
from input R reduces the buffer pool requirements. Again,
the key ranges in each page of input R and in each page of
input S are crucial. If the pages from input S have a smaller
key range on average, fewer runs from input R require mul-
tiple pages in the buffer pool at a time.

Rather than merging entire runs, it is also possible to read
individual pages from input S twice. If the buffer pool is at
its maximal permissible size, cannot be shrunk, and no pages
can be joined immediately, joining the low key range of
some pages from input S might enable shrinking the buffer
pool and then growing it again to extend the immediate join
key range. Priority queue C can track key ranges already
joined. If the key value in priority queue C falls in the mid-
dle of a page rather than a page boundary, the page must
be read again to complete its join with the buffer pool and
input R.

If the buffer pool is about to grow beyond the expected
size, i.e., two pages per run of input R, it seems worthwhile
to “compact” memory contents after joining a page of in-
put S. This requires keeping or tossing individual records

G. Graefe

from input R rather than entire pages. Thus, the algorithm
actually merges the runs from input R rather than managing
entire pages in the buffer pool. It requires at least one addi-
tional copy step for each record of input R. On average, this
technique will free 1/2 page for each of the F/2 runs, or
about 1/4 of memory.

Finally, it seems worthwhile to optimize the selection of
key values at page boundaries. The same heuristics for short
separator keys that optimize suffix truncation in B-tree in-
dexes [4] may also align page boundaries in runs within each
input and between the two inputs. If that optimization ap-
plies, fewer pages from input S require multiple pages from
input R in the buffer pool.

Two special cases are worth calling out and including in
a test suite for g-join. First, if one or both inputs are sorted
on the join columns but query optimization and plan gener-
ation did not take advantage of it, run generation by replace-
ment selection will produce only a single run for each input
and join processing equals a traditional merge join there-
after. Second, if one or both inputs are sorted in reverse or-
der, replacement selection offers no advantages over read-
sort-write cycles using quicksort, i.e., run sizes equal the
memory allocation during run generation. Additional merg-
ing may be required to reduce the number of runs from the
smaller input to F/2. Otherwise, this case should be almost
as efficient as join processing for random inputs.

In addition to skew detection and resolution, some tech-
niques might be useful designed to avoid skew and its neg-
ative effects. For example, in all cases in which hash join
and hash aggregation apply, sort-based algorithms such as
merge join and g-join can sort, group, and join on hash val-
ues rather than key values. This technique should reduce or
eliminate problems due to skew just as it does in hash join
and hash aggregation. It remains possible to exploit interest-
ing orderings for intermediate query results. For data in the
database, B-tree indexes on hash values can avoid explicit
sort operations. Moreover, these hash values may reduce the
CPU effort compared to key values because they function as
poor man’s normalized key [26] in the sort logic and in the
join logic.

5.2 Beyond inner joins

In addition to inner joins, traditional join algorithms also
serve semi-joins and anti-semi-joins (related to “in” and “not
in” predicates with nested queries) as well as outer joins
(preserving rows without matches from one or both inputs).
In fact, some of the joins permit some optimizations. For
example, a left semi-join can avoid the inner loop in nested
loops join, avoid back-up logic in merge join, and short-
circuit the loop traversing a hash bucket in hash join. On
the other hand, some join algorithms require additional data
structures. For example, a right semi-join implemented as

nested loops join needs to keep track of which rows in the in-
ner input have already had matches from earlier outer rows,
and a hash join needs an additional bit with each record in
its hash table.

In addition to join operations, relational query processing
employs set operations such as intersection, union, and set
difference. These operations may be specified in the query
syntax or they may be inserted into a query execution plan
during query optimization, in particular in plans exploiting
multiple indexes for a single table. For example, conjunction
queries might employ two indexes and intersect the resulting
sets of row references.

G-join supports all of these operations. For some of them,
it requires an additional bit for each record from the first in-
put while a record is resident in the buffer pool. All other de-
cisions for left and right semi-join, anti-semi-join, and outer
join can readily be supported with small changes and opti-
mizations in the join processing logic.

5.3 Complex queries

A join method is useful for database query processing only
if it passes the “Guy Lohman test” [22]. It must be useful
not only for joining two inputs but also in complex query
execution plans that join multiple inputs on the same or on
different columns.

In complex query execution plans with multiple join op-
erations, g-join can operate as pipelined operation (in par-
ticular with pre-sorted inputs) or as “stop-and-go” operation
or “pipeline breaker” for one or both inputs. The choice is
dictated by input sizes or by external control, e.g., from the
query optimizer. For example, a pipeline break can avoid
resource contention with an earlier or a later operation in
the query execution plan, it can enable a later operation to
improve its resource management based on more accurate
estimates of the join output size, or it can enable general
dynamic query execution plans [12, 23, 34].

The output of g-join is almost sorted. If a perfect sort or-
der is desired, the sort can be optimized to take advantage
of the guaranteed key range. At any point in time, g-join can
produce output only within a certain range of join key val-
ues defined by the current contents of the buffer pool. While
the join output within that key range fits into the memory
allocation of the sort operation, the sort operation can avoid
temporary run files and immediately pipeline its output to
the next operation in the query execution plan. Even if tem-
porary run files are required, they can be merged eagerly up
to a key value defined by the key range in the buffer pool of
g-join.

If two instances of the new join form a producer-
consumer relationship within a query execution plan and
thus pipeline the intermediate result from one to the other,
and if the join columns in the two join predicates share a

New algorithms for join and grouping operations

prefix (or ideally are entirely the same), the output order pro-
duced by the first join improves the performance of the sec-
ond. Even if the intermediate result is not perfectly sorted,
its ordering has a high correlation with the required ordering
in the second join operation. Thus, run generation in the sec-
ond join operation achieves longer intermediate runs, fewer
runs, and thus less intermediate merge effort or a smaller
buffer pool during final join processing.

For this effect, it is not required that the join columns
in the two join predicates be equal. It is sufficient that they
share a prefix. If so, longer runs and thus more efficient join
processing is entirely automatic. While this is also true for
merge join with explicit sort operations, exploiting equal
join predicates requires hash teams [36], which are more
complex than traditional binary hash join algorithms but rel-
atively simple compared to generalized hash teams [46] that
exploit partial overlap of join predicates.

This benefit occurs whether the first instance of g-join is
the first or the second input (R or S) of the second instance.
Thus, g-join might be particularly beneficial in bushy query
execution plans.

In relational data warehouses with star schemas around
one or more fact tables, star joins combine multiple small
dimension tables with a large fact table. Optimizations for
star joins include star indexes (B-tree indexes for the fact ta-
ble with row identifiers of dimension tables as search keys),
semi-join reduction (semi-joins between dimension tables
and secondary indexes of the fact table), and Cartesian prod-
ucts (of tiny dimension tables). It appears that g-join can
support all required join operations and in fact exploits the
size difference in joins of small (dimension) tables and large
(fact) tables as well as hash join.

5.4 Parallel query execution

Parallel query execution relies on partitioning a single inter-
mediate result, on pipelining intermediate results between
operations in producer-consumer relationships, or on both.
G-join can participate in all forms of parallel query exe-
cution. Partitioning intermediate results into subsets is en-
tirely orthogonal to the choice of local algorithms. Pipelin-
ing intermediate results might be aided by exploiting not
only equal column sets in join predicates of neighboring op-
erations but also by exploiting join predicates that merely
share a prefix. In other words, there is reason to expect that
g-join enables efficient pipelining more readily than multi-
ple merge join operations with intermediate sort operations.
Compared to query execution plans with multiple hash join
operations, g-join enables similar degrees of pipelining but
it does so making much better use of the sort order of inter-
mediate results.

Parallel query execution can benefit from semi-join re-
duction or its approximation by bit vector filtering. If the

matching operation in semi-join reduction is implemented
by g-join, the main join algorithm benefits not only from
data reduction but also from the interesting ordering. In
other words, the semi-join (in the data sources) can speed
up the final join operation (in the data destinations). Even
if the semi-join does not produce fully sorted results, any
amount of pre-sorting in the intermediate data streams im-
proves the run length and thus the run count in the final join.
Exploiting partially sorted inputs is inherent in run genera-
tion by replacement selection and applies both to traditional
sort operations and to g-join.

5.5 Dynamic memory allocations

For large inputs, g-join runs for some period of time, just like
sorting, merge join, and hash join. During that time, resource
contention might fluctuate. Can g-join adjust its memory al-
location after it has started consuming input?

Mechanisms for dynamic memory allocation during run
generation have been explored elsewhere. For example, one
sort algorithm primarily designed for variable-size records
and for graceful degradation employs a priority queue
for run generation, ejecting records from the in-memory
workspace to runs on disk only as needed for additional in-
put records, thus naturally adjusting to a growing or shrink-
ing workspace [51].

Mechanisms for dynamic memory allocation during in-
termediate merge steps have been proposed in the past, in-
cluding some that adjust only between merge steps and some
that can adjust within a merge step. For example, the unit of
I/O (page size) might be adjustable or the merge fan-in may
be modified [69].

Dynamic memory allocation during the final join pro-
cessing phase is as difficult as during a final merge step in
an external merge sort. Once both inputs R and S have been
merged such that input R is in F/2 runs and input S has been
merged into runs of similar sizes, shrinking the memory al-
location requires to interrupt join processing and to perform
some additional intermediate merge steps. It is yet more dif-
ficult to grow the memory allocation during join processing
and improve performance as appropriate for the new mem-
ory size. A new technique found to be effective for external
merge sort is expected to be transferable to the new join al-
gorithm [30].

In summary, for long-running queries, g-join promises to
be as dynamic as external merge sort. A small loss of effi-
ciency is incurred for the flexibility of growing and shrink-
ing the memory allocation. The loss in efficiency, however,
is much smaller than the loss incurred by not exploiting all
available memory when it becomes available.

G. Graefe

6 Replacing traditional algorithms

It is unrealistic to expect that g-join will displace all tra-
ditional join algorithms rapidly. Even if this goal succeeds
eventually, it will take many years. As an analogy, it has
taken decades for hash join to be implemented in all prod-
ucts. On the other hand, slow adoption permits additional in-
novation beyond the initial ideas. For example, after hybrid
hash join was first published in 1984, Microsoft SQL Server
included hash join only in 1998 [36], but it also included
hash teams to mirror the advantages of interesting orderings
in query execution plans based on merge join. Nonetheless,
even if it is unrealistic to propose or to expect a rapid adop-
tion of g-join, it seems worthwhile to make the case for re-
placing the traditional join algorithms.

6.1 Hash join

Hash join offers advantages over the other traditional join
algorithms for unsorted, non-indexed join inputs. Thus, the
focus of this discussion must be the case of unsorted, non-
indexed input, e.g., intermediate results produced by earlier
operations in the query.

Throughout Sect. 3, the cost of the new algorithm mirrors
the cost of hash join including recursive partitioning and hy-
brid hash join. In addition to a fairly similar cost function
for unsorted inputs, g-join also produces nearly sorted out-
put without any extra effort.

The traditional optimizations of hash join readily transfer
to g-join. For example, if compile-time query optimization
errs in estimating input sizes and in particular relative input
sizes, role reversal after run generation for both inputs is
trivial. Similarly, due to separate phases consuming the two
join inputs, bit vector filtering readily applies to g-join.

In summary, hash join and its optimizations shine for un-
sorted, non-indexed inputs. G-join closely matches the per-
formance of hash join and its optimizations in all cases.
While the performance of g-join does not exceed that of hash
join, it produces and consumes sorted intermediate results
and it eliminates the danger of a mistaken choice among
multiple join algorithms.

6.2 Merge join

Merge join shines when both join inputs are sorted by prior
operations, e.g., join or aggregation operations on the same
columns or by scans of B-tree indexes. In those cases, g-join
exploits the sorted inputs. Run generation is omitted and join
processing consumes the join inputs, which take on the roles
of runs in the discussion of Sect. 3. The buffer pool requires
one or two pages for the smaller input. Note that a traditional
merge join requires a small buffer pool to back up its inner
scan in the case of duplicate join key values. In other words,

if both inputs are sorted, g-join operates very much like a
traditional merge join and its underlying movement of pages
in the buffer pool.

If only one join input is sorted by prior operations, g-join
consumes it as a single run and performs run generation for
the other input, similar to run generation as discussed in
Sect. 3 for two unsorted inputs. The performance of g-join
in this case matches or exceeds that of merge join, because
merging the unsorted input may stop early when many runs
remain. The performance also matches or exceeds that of
hash join, because no effort is required for partitioning or
merging the input already sorted.

In summary, g-join matches or exceeds the performance
of merge join in all cases. Note that qualitative informa-
tion such as the sort order of indexes, scans, and interme-
diate results is known reliably at compile-time or at least
at plan start-up-time; the decision whether or not sorting is
required does not depend on error-prone quantitative infor-
mation such as cardinality or cost estimation.

6.3 Index nested loops join

Index nested loops join shines in two distinct cases. First,
when the outer input including an index fits in memory, the
resulting algorithm is rather like an in-memory hash join.
Second, if there is an index for the large inner input and
there are fewer rows (or distinct join key values) in the outer
input than pages in the inner input, then index nested loops
join avoids reading useless pages in the large inner input.
In both of these cases, g-join can match the performance of
index nested loops join.

In the first case, run generation stops short of writing
records from input R to temporary run files. Instead, all
records remain in the run generation workspace, which takes
on the role of the buffer pool. In-memory join processing
may use an in-memory index structure like in-memory hash
join or order-based merge logic like merge join.

In the second case, which is the traditional case for index
nested loops join, g-join sorts the small input and then per-
forms a zigzag merge join of the two inputs, i.e., the merge
logic attempts to skip over useless input records rather than
scan over them, and it applies this logic in both directions
between the join inputs. If the number of distinct join key
values in the smaller input is lower than the number of pages
in the larger input, many of these pages are never needed
for join processing. This is, of course, precisely the effect
and the performance advantage of index nested loops join
over merge join and hash join, and g-join mirrors this per-
formance advantage precisely.

In order to achieve full performance, index access should
be optimized with proven techniques such as asynchronous
prefetch, pinning page on the most recent root-to-leaf path

New algorithms for join and grouping operations

in the buffer pool, leaf-to-root search using cached bound-
ary keys, etc. These techniques limit the I/O cost of an in-
dex nested loops join to that of scanning the two indexes
involved.

6.4 Summary

In summary, g-join is competitive with hash join, merge join,
and index nested loops join in all situations. It is important
to note that all required choices—whether to sort or to rely
on the sort order of the input, whether to build an in-memory
index or rely on a database index—are based on schema in-
formation, not on cardinality estimation. In other words, the
detrimental effects of errors in compile-time cardinality es-
timation are vastly reduced.

7 Grouping, aggregation, and duplicate elimination

Join operations—including outer joins, semi joins, and set
operations such as intersection—are just one type of ex-
pensive operations in database query processing; the other
important type is grouping including “group by” aggrega-
tion and duplicate removal. The most obvious difference be-
tween these two types of operations is that joins have two in-
puts whereas grouping operations have only one input. Their
commonality is that records “match” by equal attribute val-
ues and that matching records must be brought together by
searching, sorting, or partitioning. Database systems usually
employ merge sort for sort-based operations such as merge
join and index creation.

The g-join algorithm can easily be transformed into an
equally new algorithm for grouping. The resulting general-
ized algorithm may be called g-distinct, g-grouping, or g-
aggregation. It combines algorithmic aspects as well as per-
formance characteristics of the three traditional grouping al-
gorithms that are based on a temporary index, sorted data,
or hash partitioning. For sorted input data, g-distinct ex-
ploits the sort order and is indistinguishable from traditional
in-stream aggregation for sorted inputs. For unsorted input
data, g-distinct employs run generation like g-join but avoids
sorting the input completely. This latter aspect is much like
g-join but also like hash aggregation, which avoids much
partitioning work by aggregating input records as early as
possible. For in-memory processing, g-distinct employs a
temporary in-memory hash index or other index.

It might be instructive to compare g-distinct to traditional
grouping algorithms based on merge sort and hash partition-
ing. Like a traditional merge sort, g-distinct relies on gener-
ation and merging of sorted runs. Differently from a tradi-
tional sort operation, which employs its memory as input
buffers for runs being merged, g-distinct uses only a single
input buffer and employs all its memory for candidate out-
put records. Like a traditional hash aggregation algorithm,

g-distinct employs an in-memory index where it creates and
maintains candidate output records. Differently from hash
aggregation, the contents of that in-memory hash table in-
crementally turn over as the algorithm proceeds through the
domain of grouping values. Moreover, g-distinct exploits
sorted input and can easily produce sorted output. Even par-
tially or inversely sorted input may be exploited depending
on the specific techniques implemented for run generation.

7.1 Aggregation and g-distinct

The essence of the new grouping algorithm, compared to the
new join algorithm for unsorted inputs, is to let the aggre-
gation output serve in the role of the small input of g-join.
The principle is analogous to the relationship between hash
join and hash aggregation. Hash join builds the in-memory
hash table with one input and probes the hash table with the
other one, whereas hash aggregation collects and holds out-
put records (or intermediate records) in the hash table and
probes and augments the hash table with its one input.

These roles can perhaps be explained most concretely us-
ing the record formats involved in a non-trivial aggregation
calculation, e.g., when computing the average salary per de-
partment. All record formats contain a department identi-
fier. The input records contain employee name etc. including
most importantly (here) an individual salary value. Interme-
diate records contain a sum of salaries as well as a count of
employees represented by the sum. Final output records con-
tain neither sum nor count but their quotient, i.e., the average
salary. In g-distinct used as a generalized aggregation algo-
rithm, records of the intermediate format occupy the buffer
pool, just like the small input in a g-join operation. When
an input record refers to a group not yet in the buffer pool,
a new intermediate record is created. When an input record
refers to a group already in the buffer pool, the appropri-
ate aggregation takes place. When an intermediate record is
ejected from the buffer pool, a final record is derived from
the intermediate record. Again, this is analogous to hash ag-
gregation.

In order to serve as an algorithm for grouping, the g-join
algorithm requires some modifications. First, the “small in-
put” is created incrementally in memory rather than read
from multiple runs. Consequently, priority queues A and B
are omitted. Second, priority queue C guides both reading
from the input and eviction of records from the buffer pool.
Until all input records within a key range have been con-
sumed and the key range can be evicted, new values in the
grouping attributes may be encountered and thus new out-
put records may need to be created. As in g-join, the op-
tional priority queue D may reduce the duration of large
buffer pool requirements but it does not reduce the maxi-
mal buffer pool requirement. Third, space management in

G. Graefe

the buffer pool must allow out-of-order creation of candi-
date output records. Moreover, the buffer pool must also al-
low changes in record sizes in some cases, e.g., a “max” op-
eration for variable-length string attributes. Fourth, the con-
ditions change for the hybrid of internal and external opera-
tion, i.e., in-memory aggregation versus run generation and
merging.

Hash aggregation switches from pure in-memory aggre-
gation into overflow mode if the output size exceeds the
memory allocation. In hybrid hash aggregation, the required
number of overflow partitions uses essentially the same
calculation as in hybrid hash join. For build input size R

and probe input size S in hybrid hash join (with memory
size M , partitioning fan-out F , typically F = M , and M ≤
R ≤ F × M), the number of required overflow partitions is
K = (R−M)÷ (M −1). Similarly, hybrid hash aggregation
with input size I and output size O (and M ≤ O ≤ F × M)

requires K = (O − M) ÷ (M − 1) overflow partitions, with
K = 0 for O = M and K = F for O = F × M .

This calculation of K applies to both hash aggregation
and g-distinct. In the latter case, K memory pages are em-
ployed for run generation, just as in g-join in hybrid mode.
The remaining M −K memory pages contain candidate out-
put records with partial sum and counts. M − K memory
pages absorb (M − K) × I ÷ O input pages (assuming a
sufficiently uniform key value distribution). The remaining
input data form runs of 2K pages on average (assuming run
generation using replacement selection).

If O ≤ F × M , g-distinct in hybrid mode applies, even
if the input size is many times larger and a traditional sort-
based aggregation (or duplicate removal) operation would
require multiple merge steps. For O > F × M , even g-
distinct should employ some intermediate merge steps such
that the final aggregation step consumes large runs with
many pages and thus pages with small key ranges. As in
g-join’s large input, g-distinct input pages with large key
ranges increase the required size of the buffer pool. Note
that O > F × M also defines the case in which hash aggre-
gation requires intermediate partitioning steps.

While g-join produces nearly sorted output, g-distinct
produces completely sorted output. Moreover, it produces
its first output very quickly after consuming its input, in par-
ticular in the hybrid operating mode. Its first output is earlier
than in traditional hash aggregation because it produces its
output page by page, not an entire hash table at a time; and
its output is earlier than in traditional sort-based duplicate
removal because it might not need intermediate merge steps.
Moreover, one could force a hybrid initial step in g-distinct,
thus producing some output from records in the buffer pool
immediately after initial run generation. Such earliest ag-
gregation output incurs additional expenses in the forms of
smaller runs, more runs, and additional merging before pro-
ducing further output.

7.2 Integrated operations

G-join and g-aggregation can be combined into a single op-
eration, quite like the integration of hash join and hash ag-
gregation [36]. This algorithm performs grouping on its two
inputs and then joins the two grouping results. Consider, for
example, a query to find customers whose average invoice
shows a lower dollar amount than their average order, indi-
cating an inability to satisfy entire orders at once. Grouping
is required for two database tables (“orders” and “invoices”)
followed by a join of the group summaries. All three op-
erations focus on customer identifiers and can therefore be
integrated into a single physical operation and algorithm.

Existing implementations (including [36]) integrate
grouping only on the build input of the join operation. In
other words, the example query above requires at least two
operations, each with its own hash table organized by cus-
tomer identifier. Moreover, due to its asymmetry, this design
prohibits role reversal in integrated operations. Recently it
has become clear, however, that this restriction is not re-
quired, even for query processing using hash-based algo-
rithms. In the improved design, records in the hash table may
contain preliminary aggregations (e.g., sums and counts but
not averages) for both inputs. In the example above, each
record in the hash table summarizes information about one
customer, including information from orders as well as in-
voices. Producing an output record from a record in the hash
table finalizes all aggregations (e.g., averages from sums and
counts) and applies the join predicate (e.g., comparing aver-
age order amount and average invoice amount).

Three further comments on this new improvement of
hash join, hash aggregation, and their integration: First, the
equality predicate applies prior to aggregation in the probe
input and thus eliminates some records from the probe input.
Second, minor modifications permit semi-join and outer join
operations. For example, the example query above might be
a full outer join such that both customers with orders but no
invoices and customers with invoices but no orders can be
included in the output. Third, the hash join algorithm with
aggregation supported for both inputs also permits role re-
versal, e.g., if the build input (or its aggregation) unexpect-
edly turns out to be larger than the probe input (or its aggre-
gation).

Like hash join with these new improvements, g-join can
support aggregation on both inputs. The design is similar to
the one outlined above for hash join. Records in the buffer
pool contain the appropriate aggregation fields. In the ex-
ample query, this would include sum and count of orders
and sum and count of invoices. Semi-joins and outer joins,
e.g., customers with orders or invoices but not both, can be
supported. Role reversal, bit vector filtering, etc. all remain
possible in g-join with aggregation on one or both inputs.

Moreover, immediate aggregation and join processing
may begin even if run generation leaves more than F/2

New algorithms for join and grouping operations

runs for each input. The output of the aggregation must be
smaller than F × M for at least one of the inputs. This input
then takes the role of the small input of g-join and runs from
that input must be aggregated in the buffer pool.

This is actually quite similar to overflow during hash ag-
gregation prior to a join. In a sense, in both hash join and
g-join the sizes of aggregation output drive the in-memory
data structures (and thus memory requirements and over-
flow) and both join inputs are aggregated into these data
structures.

For g-join with aggregation of huge inputs, intermediate
merge steps may be required. If so, these merge steps can ap-
ply early duplicate removal and aggregation as in traditional
merge sort [5].

7.3 Integration with partitioned B-trees

Integration of g-distinct with g-join is one opportunity; in-
tegration of g-distinct with partitioned B-trees is another.
Partitioning within a B-tree is based on an artificial lead-
ing key field and combined with online reorganization. Par-
titions are created and removed as easily as insertion and
deletion of records; catalog operations are not required. Par-
titioned B-trees can be exploited during external merge sort
for accurate deep read-ahead and for dynamic resource al-
location, during index creation for a reduced delay until the
first query can search the new index, and for miscellaneous
other operations. If only a single value for this leading B-tree
column is present, which is the usual and most desirable
state, the B-tree index is rather like a traditional index. If
multiple values are present at any one point in time, which
usually is only a transient state, the set of index entries is
effectively partitioned.

Additional use cases for partitioned B-trees include ef-
ficient bulk import (initial and incremental loading) and
adaptive indexing. Among the two approaches to adap-
tive indexing, adaptive merging [33] is more suitable here
than database cracking [43], which relies on an in-memory
columnar database stored in arrays and on partitioning steps
similar to those in quicksort [42]. Adaptive merging relies on
partitioned B-trees [24], where each partition is quite similar
to a run in external merge sort.

Adaptive merging creates and optimizes B-tree indexes
as side effects of query execution. The first query extracts
future index entries from the primary storage structure (e.g.,
a clustered index), sorts them into runs within the limits of
a convenient memory allocation, and saves those runs in a
partitioned B-tree. The run identifier in each record serves
as artificial leading key field and thus as partition identifier.
Subsequent queries merge key values satisfying their range
predicates. Eventually, all key values in active key ranges
can be found in a single partition. From this point forward,
the index performs just like a traditional B-tree index, yet

index creation and optimization have been side effects of
query execution.

The initial phase of adaptive merging leaves sorted runs,
represented as partitions within a partitioned B-tree index. In
many cases, G-distinct can consume those partitions imme-
diately, i.e., without merging them. Recall that g-distinct can
process arbitrarily many runs in a single pass over the data
as long as the aggregation output is smaller than memory
times the merge fan-in, i.e., O ≤ M × F . In contrast, hash
aggregation succeeds in a single pass over the data only for
output sizes smaller than memory, i.e., O ≤ M . With merge
fan-in F at least in the 10s and often in the 100s, the for-
mer condition is much more likely to hold than the latter. In
other words, g-distinct takes full advantage of the pass over
the data implicit in creation of the index in its initial format,
i.e., in runs or partitions.

Partitioned B-trees aid not only incremental index cre-
ation, e.g., in adaptive merging, but also efficient index
maintenance, e.g., bulk insertion or loading. For a table only
one index, e.g., a primary B-tree index or an index-organized
table, replacement selection can organize the stream of new
records into runs twice the memory size. These runs can
immediately form partitions within the partitioned B-tree.
For a table with multiple indexes, e.g., multiple secondary
B-trees in complete independent sort orders, quicksort and
traditional read-sort-write cycles can organize index entries
into partitions aligned across all indexes.

For example, a fact table in a data warehouse might in-
clude a foreign key for each dimension table and indexes on
most or all of them. Loading additional fact rows is a fre-
quent and traditionally very expensive operation, which par-
titioned B-trees can speed up considerably. Moreover, ag-
gregation operations by foreign key columns are very com-
mon, because they derive summary information about di-
mension entities, e.g., the sum of sales by retail store.

For a table with one or multiple indexes, if a g-distinct
operation finds data partially sorted, i.e., organized into runs
or index partitions, it can take full advantage of this prior sort
effort, whereas hash aggregation does not. Again, while hash
aggregation can process a table in memory only if O ≤ M ,
g-distinct can do so if O ≤ M × F , with merge fan-in F in
the 10s or the 100s. Similarly, hash aggregation completes
with a single level of external partitioning and overflow files
if O ≤ M × F , whereas g-distinct starting with input par-
tially sorted in a partitioned B-tree requires only a single
merge level if O ≤ M × F 2.

Adaptive merging and incremental loading using parti-
tioned B-trees interact not only with g-distinct but also with
g-join. For the small input, existing B-tree partitions must
be merged in preparation of a g-join execution until no more
than F/2 partitions remain. For the large input, the number
of partitions is not important and can be arbitrarily large. It is
important, however, that runs or partitions sizes in the large

G. Graefe

input match or exceed those of the small input, as discussed
earlier (Sect. 4.6). More research into adaptive merging, the
g-join family of algorithms, and their interaction is required
to optimize robust query execution algorithms and adaptive
physical database design.

8 Open issues

Many open issues have been resolved in the two partial pro-
totypes and in many discussions with knowledgeable col-
leagues. Several hard issues remain, however, and are listed
here to the best of our knowledge.

Given multiple “waterproof” methods to cope with skew
as well as multiple heuristics for reducing the performance
effects of skew, it will require practical experience with real
systems and real data before a preferred skew management
technique will emerge. Note that this is quite similar to hash
join. Algorithms to cope with skew in hash value distribu-
tions, in particular due to duplicate key values, have been
described only after hash join had been designed and imple-
mented for products [36, 68].

The motivation for a new join algorithm had been the
desire to avoid mistaken choices among the three tradi-
tional join algorithms. Another important issue addressed
by compile-time query optimization is the join order. Sev-
eral research and development efforts have addressed poorly
chosen join orders by dynamic choice among alternative
query execution plans or plan fragments [12, 34], by dy-
namic reordering of join operations [53], or by routing in-
dividual records or groups of records in intermediate results
[2, 6]. G-join seems compatible with dynamic query execu-
tion plans and, inasmuch as it relies on and resembles nested
iteration and index searches, with routing individual records.
It is unclear whether it can serve as a stepping stone towards
robustness in query execution performance including all of
join order, join algorithms, and access paths.

Parallel query execution requires another choice in ad-
dition to access paths, join algorithms, and join order. Tra-
ditional parallel join algorithms either partition both inputs
on the join attribute or partition the large input and broad-
cast the small join input. Ideally, one or both join inputs are
partitioned as required in the database, i.e., no additional
partitioning effort is required. Traditional query optimiza-
tion chooses between symmetric partitioning and broadcast-
ing based on cardinality estimation, with the same perils as
in the choice of join algorithms. The solution of this prob-
lem might be found in an adaptive hybrid strategy, strategies
based on m × n matrix of join locations, with the values
of m and n set dynamically. The details and advantages of
such an approach are open questions, as is the compatibility
of g-join with such join strategies.

Mistaken choices of join order and join algorithm go be-
yond read-only queries, e.g., during join processing to val-
idate foreign key constraints during definition and database
updates, or during join processing during maintenance of
materialized views. Moreover, they apply to data manage-
ment software that supports streaming data [10], data-driven
joins, and early results [18]. At this point, applying or adopt-
ing g-join to these operations remains future research.

Finally, nested queries are a special case of joins. In most
cases, query rewrite can transform SQL syntax with nested
sub-queries into equivalent algebra expressions with inner
joins, (anti) semi-joins, and other operations that can be
supported with g-join. It remains an open issue, however,
whether all nested queries can be transformed in this way
and processed with g-join. Nonetheless, it seems certain that
any query expression that can be supported by merge join or
hash join can also be supported by g-join.

9 Performance

A prototype of the core algorithm produced the results re-
ported here. Michael Carey and his students are building a
query execution system at UC-Irvine that includes g-join.

G-join combines well-studied elements of prior query
processing algorithms. Implementation techniques and be-
havior of run generation, replacement selection, merging, in-
memory hash tables, index creation, index search, etc. are all
well understood. A new implementation of those algorith-
mic components is unlikely to yield new insights or results.

The principal novel component and the core of g-join is
the schedule of page movements during join processing, i.e.,
the technique described in Sect. 4.2. The buffer pool loads
and drops pages of runs from input R while individual pages
of runs from input S are scheduled, read, and joined with the
buffer pool contents. This is the algorithm component mod-
eled in detail in the prototype. Actual I/O operations with
on-disk files and operations on individual records are not in-
cluded in the prototype.

The crucial performance characteristic that is not imme-
diately known from prior work is the required size of the
buffer pool. In the best case, only a single page of each run
from input R is required; in the worst case, the buffer pool
must grow to hold all of input R. The expectation from the
discussion above is that about 2 pages per run from input R
are required in the steady state. If this expectation is accu-
rate, the I/O volume of g-join is practically equal to that of
recursive and hybrid hash join. This assumes, of course, an
unsorted input for g-join (as g-join would exploit pre-sorted
inputs) and a perfectly uniform distribution of hash values in
hash join (which is required to achieve balanced partitioning
and to match the standard cost function in practice).

New algorithms for join and grouping operations

Fig. 2 Buffer pool requirements over time

9.1 Implementation status and baseline experiment

The prototype focuses on page movements in the algorithm
of Sect. 4.2. Input parameters include the run count for each
input (defaults 10 and 90 runs), the page counts for each in-
put (default 40 pages per run), and the number of values in
the domain of join key values (default 1,000,000 distinct val-
ues). With random key ranges in input pages, the run sizes
are only approximate. The output includes the average and
maximum buffer pool sizes, and may include a trace show-
ing how the buffer pool grows and shrinks over time.

With the default values, the prototype simulates a join of
input R with about 400 pages to input S with about 3,600
pages. Managing the priority queues takes less than 0.1 sec-
onds on a laptop with a 2.8 GHz CPU. Thus, the overhead
of the priority queues seems negligible compared to sorting
and joining records as well as the I/O during join processing.

Figure 2 illustrates the size of the required buffer pool for
input R over the course of an experiment. The x-axis indi-
cates how many pages of the large input S have already been
joined. The y-axis shows the size of the buffer pool at that
time, indicated as the average number of pages per run from
input R. It can be clearly seen that this size hovers around
2 pages per run from input R. The buffer pool repeatedly
grows beyond that, but not by very much. The maximum in
this experiment is 2.3 pages per run (equal to 23 pages to-
tal in this experiment). The buffer pool also shrinks below
2 pages per run repeatedly and in fact more often and more
pronounced than growing beyond 2 pages per run. At the
end of the join algorithm, the buffer pool size shrinks to 1
page per run.

9.2 Run counts and sizes

The next experiment shows how 2 pages per run from in-
put R is quite stable across a range of memory sizes and
input sizes.

Specifically, memory sizes in this experiment range from
10 pages to 5,120 pages, varied by powers of 2. Run sizes are
assumed twice the memory size. The number of runs from

Fig. 3 Buffer pool requirements with varying memory and input sizes

input R is half the memory size (such that the buffer pool
holds 2 pages per run). The number of runs from input S is 9
times larger, as in the prior experiment. Thus, run sizes vary
from 20 to 10,240 pages and run counts vary from 5 to 2,560
for input R and from 45 to 23,040 for input S. Thus, input
sizes vary from 100 to 26 million pages for input R and from
900 pages to 236 million pages for input S.

Figure 3 relates the number of runs from input R and the
buffer pool requirements, both the average (lower curve) and
the maximal (upper curve) buffer pool size for each memory
and input size. In all cases, each run from the smaller input R
requires about 2 pages in the buffer pool, confirming the ba-
sic hypothesis that g-join perform similar to hash join for
large, unsorted inputs.

With an increasing number of runs from each input, the
average grows closer to 2 and the maximum shrinks closer
to 2. The former is due to many runs from the large input S;
some page in some run from input S spans any page bound-
ary in the runs from input R, and thus all runs from input R
require about 2 pages in the buffer pool at all times. The lat-
ter is due to many runs from the small input R; even while
some run might need 3 instead of 2 pages for a short period,
it has little effect on the number of buffer pool pages when
divided by the number of runs from input R. Thus, while the
number of buffer pool pages is usually below 2, it sometimes
is above 2, but only by a little bit and only for a short time.

Figure 4 illustrates the effect of insufficient or excessive
merging in the large input S. In all cases, all runs from in-
put R are of the same size and all runs from input S are of
the same size. The x-axis indicates the quotient of runs size
from input S to those from input R. The left-most data points
indicate runs from input R 8 times larger than those from in-
put S; the right-most data points indicate runs from input S
8 times larger than those from input R. The y-axis, ranging
from 1 to 10 on a logarithmic scale, again shows average
and maximal buffer pool needs, with the total buffer pool
size divided by the number of runs. For all data points, there
are 10 runs from input R and 90 runs from input S.

G. Graefe

Fig. 4 Buffer pool requirements with different run sizes

In the left half of the diagram, it is readily apparent that
g-join needs many buffer pool pages per run if runs from
input S are smaller. This is due to the large key range cov-
ered by each page in such a run: it takes many pages of a
larger run from input R to cover such a key range. In the
right half of the diagram, where runs from input S are larger
than the runs from input R, the average buffer pool require-
ments shrink almost to 1 page per run from input R. The
maximal buffer pool requirements, however, do not.

Figure 4 permits two conclusions. First, in order to min-
imize buffer pool requirements, runs from input S require
merging until all remaining runs are larger than all runs from
input R. In this mode of operation, the cost function of g-join
for unsorted inputs most closely resembles that of hash join.
Second, if buffer space is readily available for runs from in-
put R, it can be exploited to save some effort merging runs
from input S. For example, with 10 buffer pool pages for
each run from input R, runs from input S may be left smaller
than those from input R, thus saving merge effort for input S.

9.3 Skew

Just like hash join suffers from skew in the distribution of
hash values, g-join may suffer from various forms of skew in
its inputs. There are several forms of skew, e.g., the sizes of
runs (due to dynamic memory allocation during run genera-
tion) as well as skew in key value distribution. The form of
skew most likely to affect the performance of g-join is skew
in the sizes of runs. Such skew might be due to dynamic
memory management during run generation or a correlation
between input order and desired sort order in run generation
by replacement selection.

Figure 5 illustrates the effect when runs from the same
input differ in size. (In Fig. 4, all runs from either one input
are the same size.) In Fig. 5, sizes for runs from input R are
chosen from the range 400 to 3,200 pages, i.e., the largest
and smallest run might differ by a factor 8. Sizes for runs
from input S might also differ by a factor 8, but the range
is chosen differently for each data point. For the left-most

Fig. 5 Buffer pool requirements with varying run sizes

data point (ratio = 1), the range is also 400 to 3,200 pages;
for the right-most data point, the range is 64 times larger or
25,600 to 204,800 pages.

The buffer pool needs are governed by the largest run
from input R and the smallest run from input S. They are
equal for the central data point (ratio = 8), and the average
and maximal buffer pool requirement for each run from in-
put R is about 2 pages. It is actually less because some runs
from input R are small and some runs from input S are large.

At the left-most data point, some runs from input R are
much larger than some runs from input S. Those runs require
many more pages in the buffer pool, and in fact dominate the
overall buffer pool requirements. The number of pages per
run from input R (about 5) is almost equal to the ratio of
runs sizes (about 8).

At the right-most data point, all runs from input R are
much smaller than all runs from input S. Thus, each page
from input R covers many pages from input S. With fairly
small key ranges within pages from input S, only a few runs
from input R require 2 pages in the buffer pool at any point
in time. Thus, the maximum buffer pool size (divided by the
number runs from input R) is approaching the ideal value
of 1.

9.4 Hyrax experiences

Michael Carey and students at UC-Irvine have experimented
with g-join [52] within their Hyrax research prototype. Their
implementation differs from the original design described
above by using quicksort for run generation rather than re-
placement selection. Thus, runs are equal in size to the mem-
ory allocation, not twice. More importantly, this algorithm
choice exacerbates the problem of a last run much smaller
than memory and with a key range per page much larger
than in other runs. They also observe that incidental order-
ing in an input has little effect on run sizes and run counts,
which of course is different with replacement selection.

Their experiments so far show faster random writes dur-
ing hash partitioning than random reads during merging and
join processing in g-join. This is most likely due to auto-
matic write-behind in hash join (using additional system

New algorithms for join and grouping operations

memory) and the lack of forecasting and asynchronous read-
ahead in this implementation of g-join. Nonetheless, their
experiments confirm the above observations about the num-
ber of I/O operations and the amount of data written to and
read from temporary files.

Finally, their experiments show average and maximal
buffer pool sizes larger than shown in the experiments
above, but still consistently below 3 pages per run if runs
of input S are no smaller than runs of input R. It has been
impossible to reproduce these larger buffer pool sizes with
the initial implementation of the core algorithm used in the
experiments reported above.

10 Summary and conclusions

In summary, the new, generalized join algorithm (“g-join”)
combines elements of the three traditional join algorithms
yet it is an entirely new algorithm. This is most obvious in
the case of two unsorted inputs, where g-join performs run
generation like an external merge sort but then joins these
runs without merging them (or with very little merging even
for huge inputs). Therefore, g-join performs like merge join
in the case of two sorted inputs and like hash join in the
case of two unsorted inputs, including taking advantage of
different input sizes. Our partial prototype implementation
and our experimental evaluation confirm the analytical per-
formance expectations.

In the case of indexed inputs, g-join exploits the indexes
for sorted scans or even for searches in a zigzag merge join.
Skipping over many pages in the index and fetching only
those input pages truly required for the join is the main ad-
vantage of index nested loops join over hash join and merge
join. G-join mirrors this advantage by using a zigzag merge
join (skipping forward) rather than a traditional merge join
(scanning forward). Thus, g-join performs as well as index
nested loops join for a large, indexed, inner join input.

In conclusion, g-join performs as well as merge join and
hash join for sorted and unsorted inputs, and as well as index
nested loops join for large indexed inputs. Thus, we believe
that g-join competes with each of the three traditional join
algorithms where they perform best. It could therefore be a
replacement for each or for all of them. Replacing all three
traditional join algorithms with g-join eliminates the danger
of mistaken (join) algorithm choices during compile-time
query optimization. Thus, g-join improves the robustness of
query processing performance without reducing query exe-
cution performance.

Reducing the repertoire to a single algorithm for join
and for grouping also simplifies integration of traditional
relational operations for set operations into modern exe-
cution frameworks such as MapReduce and Hadoop [13].
G-join can process map-reduce operations—‘reduce’ opera-
tions are usually equivalent to aggregation operations and

‘map’ operations can be either joins with other data sets
or function applications. Caching results of expensive func-
tions is very similar to duplicate removal operations and the
same basic algorithms apply [40]. A single implementation
for each of these operations eliminates the burden of choos-
ing an algorithm for many ‘map’ and ‘reduce’ operations.
Thus, g-join and g-distinct are much better suited for mod-
ern execution frameworks than the troika of traditional join
algorithms and the troika of traditional aggregation algo-
rithms.

While g-join and g-distinct are based on merging sorted
runs and thus akin to traditional merge sort, an alternative
family of algorithms can be based on distribution sort. It
might be surprising that a second such family of algorithms
exists that may replace all other join algorithms and group-
ing algorithms. The well-known duality of merge sort and
distribution sort, however, suggests a pair of algorithm fami-
lies. For lack of imagination, we call the resulting algorithms
h-join and h-grouping. The suggested implementation of
distribution sort focuses on order-preserving hash functions
in hybrid hash join, hybrid hash aggregation, histogram-
guided recursive partitioning, and hash teams [36]. Role
reversal, bit vector filtering, asynchronous read-ahead and
write-behind, zigzag merge join (skipping forward instead
of scanning forward, in particular when joining ordered in-
dexes), etc. all remain relevant. Our future research will also
explore this opportunity.

Acknowledgements Mike Carey, Guangqiang “Aries” Li, and
Vinayak Borkar have implemented a variant of g-join and compared
its performance with their implementation of hash join. Barb Peters,
Harumi Kuno, and the reviewers suggested numerous improvements
in the presentation of the material. Stephan Ewen, Stefan Krompass,
and Wey Guy provided excellent feedback on the algorithm, including
test cases for robustness and general stress tests.

References

1. Antoshenkov G, Ziauddin M (1996) Query processing and opti-
mization in Oracle Rdb. VLDB J 5(4):229–237

2. Avnur R, Hellerstein JM (2000) Eddies: continuously adaptive
query processing. In: SIGMOD, pp 261–272

3. Ballinger C, Fryer R (1997) Born to be parallel: why parallel ori-
gins give Teradata an enduring performance edge. IEEE Data Eng
Bull 20(2):3–12

4. Bayer R, Unterauer K (1977) Prefix B-Trees. ACM Trans
Database Syst 2(1):11–26

5. Bitton D, DeWitt DJ (1983) Duplicate record elimination in large
data files. ACM Trans Database Syst 8(2):255–265

6. Bizarro P, Babu S, DeWitt DJ, Widom J (2005) Content-based
routing: different plans for different data. In: VLDB, pp 757–768

7. Bratbergsengen K (1984) Hashing methods and relational algebra
operations. In: VLDB, pp 323–333

8. Carey MJ, Kossmann D (1997) On saying “enough already!” in
SQL. In: SIGMOD, pp 219–230

9. Carey MJ, Kossmann D (1997) Processing top n and bottom n
queries. IEEE Data Eng Bull 20(3):12–19

G. Graefe

10. Chandrasekaran S, Franklin MJ (2002) Streaming queries over
streaming data. In: VLDB, pp 203–214

11. Chaudhuri S, Shim K (1994) Including group-by in query opti-
mization. In: VLDB, pp 354–366

12. Cole RL, Graefe G (1994) Optimization of dynamic query evalu-
ation plans. In: SIGMOD, pp 150–160

13. Dean J, Ghemawat S (2004) MapReduce—simplified data pro-
cessing on large clusters. In: OSDI, pp 137–150

14. DeWitt DJ, Gerber RH (1985) Multiprocessor hash-based join al-
gorithms. In: VLDB, pp 151–164

15. DeWitt DJ, Katz RH, Olken F, Shapiro LD, Stonebraker M, Wood
DA (1984) Implementation techniques for main memory database
systems. In: SIGMOD, pp 1–8

16. DeWitt DJ, Gerber RH, Graefe G, Heytens ML, Kumar KB, Mu-
ralikrishna M (1986) GAMMA—a high performance dataflow
database machine. In: VLDB, pp 228–237

17. DeWitt DJ, Naughton JF, Burger J (1993) Nested loops revisited.
In: PDIS, pp 230–242

18. Dittrich J-P, Seeger B, Taylor DS, Widmayer P (2002) Progressive
merge join: a generic and non-blocking sort-based join algorithm.
In: VLDB, pp 299–310

19. Freytag JC, Goodman N (1989) On the translation of rela-
tional queries into iterative programs. ACM Trans Database Syst
14(1):1–27

20. Fushimi S, Kitsuregawa M, Tanaka H (1986) An overview of the
system software of a parallel relational database machine GRACE.
In: VLDB, pp 209–219

21. Gassner P, Lohman GM, Schiefer KB, Wang Y (1993) Query opti-
mization in the IBM DB2 family. IEEE Data Eng Bull 16(4):4–18

22. Graefe G (1993) Query evaluation techniques for large databases.
ACM Comput Surv 25(2):73–170

23. Graefe G (2000) Dynamic query evaluation plans: some course
corrections? IEEE Data Eng Bull 23(2):3–6

24. Graefe G (2003) Sorting and indexing with partitioned B-trees. In:
CIDR

25. Graefe G (2003) Executing nested queries. In: BTW, pp 58–77
26. Graefe G (2006) Implementing sorting in database systems. ACM

Comput. Surv. 38(3)
27. Graefe G (2006) B-tree indexes, interpolation search, and skew.

In: DaMoN, p 5
28. Graefe G (2007) Master-detail clustering using merged indexes.

Inform Forsch Entwickl 21(3–4):127–145
29. Graefe G (2010) A survey of B-tree locking techniques. ACM

Trans Database Syst
30. Graefe G (2010) Robust sorting (in preparation)
31. Graefe G, Cole RL (1995) Fast algorithms for universal quantifica-

tion in large databases. ACM Trans Database Syst 20(2):187–236
32. Graefe G, DeWitt DJ (1987) The Exodus optimizer generator. In:

SIGMOD, pp 160–172
33. Graefe G, Kuno HA (2010) Self-selecting, self-tuning, incremen-

tally optimized indexes. In: EDBT, pp 371–381
34. Graefe G, Ward K (1989) Dynamic query evaluation plans. In:

SIGMOD, pp 358–366
35. Graefe G, Linville A, Shapiro LD (1994) Sort versus hash revis-

ited. IEEE Trans Knowl Data Eng 6(6):934–944
36. Graefe G, Bunker R, Cooper S (1998) Hash joins and hash teams

in Microsoft SQL Server. In: VLDB, pp 86–97
37. Graefe G, Kuno HA, Wiener JL (2009) Visualizing the robustness

of query execution. In: CIDR
38. Haas LM, Carey MJ, Livny M, Shukla A (1997) Seeking the truth

about ad-hoc join costs. VLDB J 6(3):241–256
39. Hagmann RB (1986) An observation on database buffering per-

formance metrics. In: VLDB, pp 289–293
40. Hellerstein JM (1998) Optimization techniques for queries with

expensive methods. ACM Trans Database Syst 23(2):113–157

41. Helmer S, Westmann T, Moerkotte G (1998) Diag-join: an oppor-
tunistic join algorithm for 1:N relationships. In: VLDB, pp 98–
109

42. Hoare CAR (1962) Quicksort. Comput J 5(1):10–15
43. Idreos S, Kersten ML, Manegold S (2007) Database cracking. In:

CIDR, pp 68–78
44. Ioannidis YE, Kang YC (1990) Randomized algorithms for opti-

mizing large join queries. In: SIGMOD, pp 312–321
45. Keller T, Graefe G, Maier D (1991) Efficient assembly of complex

objects. In: SIGMOD, pp 148–157
46. Kemper A, Kossmann D, Wiesner C (1999) Generalised hash

teams for join and group-by. In: VLDB, pp 30–41
47. Kim W (1980) A new way to compute the product and join of

relations. In: SIGMOD, pp 179–187
48. Kitsuregawa M, Nakayama M, Takagi M (1989) The effect of

bucket size tuning in the dynamic hybrid GRACE hash join
method. In: VLDB, pp 257–266

49. Knuth DE (1973) The art of computer programming, vol III: sort-
ing and searching. Addison-Wesley, Reading

50. Larson P-Å (2003) External sorting: run formation revisited. IEEE
Trans Knowl Data Eng 15(4):961–972

51. Larson P-Å, Graefe G (1998) Memory management during run
generation in external sorting. In: SIGMOD, pp 472–483

52. Li G (2010) On the design and evaluation of a new order-based
join algorithm. MS-CS thesis, UC Irvine

53. Li Q, Shao M, Markl V, Beyer KS, Colby LS, Lohman GM (2007)
Adaptively reordering joins during query execution. In: ICDE,
pp 26–35

54. Lohman GM (1988) Grammar-like functional rules for represent-
ing query optimization alternatives. In: SIGMOD, pp 18–27

55. Markl V, Lohman GM, Raman V (2003) LEO: An autonomic
query optimizer for DB2. IBM Syst J 42(1):98–106

56. Mohan C, Narang I (1992) Algorithms for creating indexes
for very large tables without quiescing updates. In: SIGMOD,
pp 361–370

57. Mohan C, Haderle DJ, Wang Y, Cheng JM (1990) Single table
access using multiple indexes: optimization, execution, and con-
currency control techniques. In: EDBT, pp 29–43

58. Moss JEB (1992) Working with persistent objects: to swizzle or
not to swizzle. IEEE Trans Softw Eng 18(8):657–673

59. Muralikrishna M, DeWitt DJ (1988) Equi-depth histograms for es-
timating selectivity factors for multi-dimensional queries. In: SIG-
MOD, pp 28–36

60. Nakayama M, Kitsuregawa M, Takagi M (1988) Hash-partitioned
join method using dynamic destaging strategy. In: VLDB, pp 468–
478

61. Pang H, Carey MJ, Livny M (1993) Memory-adaptive external
sorting. In: VLDB, pp 618–629

62. Salzberg B (1989) Merging sorted runs using large main memory.
Acta Inform 27(3):195–215

63. Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG
(1979) Access path selection in a relational database management
system. In: SIGMOD, pp 23–34

64. Shapiro LD (1986) Join processing in database systems with large
main memories. ACM Trans Database Syst 11(3):239–264

65. Shekita EJ, Carey MJ (1990) A performance evaluation of pointer-
based joins. In: SIGMOD, pp 300–311

66. Simmen DE, Shekita EJ, Malkemus T (1996) Fundamental tech-
niques for order optimization. In: SIGMOD, pp 57–67

67. Youssefi K, Wong E (1979) Query processing in a relational
database management system. In: VLDB, pp 409–417

68. Zeller H, Gray J (1990) An adaptive hash join algorithm for mul-
tiuser environments. In: VLDB, pp 186–197

69. Zhang W, Larson P-Å (1998) Buffering and read-ahead strategies
for external mergesort. In: VLDB, pp 523–533

New algorithms for join and grouping operations

Goetz Graefe is an HP Fellow re-
searching indexing and query pro-
cessing. Prior to joining Hewlett-
Packard Laboratories in 2006,
Goetz spent 12 years as software
architect in product development
at Microsoft, mostly in database
management. Both query optimiza-
tion and query execution of Mi-
crosoft’s 1990s reimplementation of
SQL Server are based on his de-
signs. Goetz’s research credentials
include numerous original publica-
tions as well as surveys published
by ACM Computing Surveys and

ACM Transactions on Database Systems. His original publications
span query optimization, query execution, indexing, and concurrency
control. His work has been honored by the ACM SIGMOD 2000 “test
of time” award for work on parallel query execution, by the IEEE ICDE
2005 “influential paper” award for work on extensible query execution,
and by the 2009 ACM “software systems” award for participation in
the Gamma database machine research project.

	New algorithms for join and grouping operations
	Abstract
	Introduction
	Prior work
	Nested loops join
	Cost functions
	Variants and optimizations

	Merge join and sorting
	Cost functions
	Variants and optimizations

	Hash join
	Cost functions
	Variants and optimizations

	Comments on prior join algorithms
	Sort-based aggregation
	Nested loops aggregation
	Hash aggregation
	Summary of prior work

	The new join algorithm
	Unsorted inputs
	Case R <= M
	Case R = F xM
	Page operations
	Algorithm overview
	Data structures
	Algorithm
	First and last runs
	Prototype implementation

	Record operations

	Case M < R < F xM
	Case R = F2 xM
	Case F xM < R < F2 xM
	The general case
	Summary for unsorted inputs

	The usual questions
	Skew
	Beyond inner joins
	Complex queries
	Parallel query execution
	Dynamic memory allocations

	Replacing traditional algorithms
	Hash join
	Merge join
	Index nested loops join
	Summary

	Grouping, aggregation, and duplicate elimination
	Aggregation and g-distinct
	Integrated operations
	Integration with partitioned B-trees

	Open issues
	Performance
	Implementation status and baseline experiment
	Run counts and sizes
	Skew
	Hyrax experiences

	Summary and conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

