
Concurrency and Replica Control
for Constraint-based Database Caching

Joachim Klein

Databases and Information Systems, Department of Computer Science,
University of Kaiserslautern, Germany

jklein@cs.uni-kl.de

Abstract. Efficient and dynamic reallocation of data is a major chal-
lenge of distributed data management, because current solutions re-
quire constant monitoring and manual adjustment. In contrast, future
solutions should provide autonomic mechanisms to achieve self-tuning
and exhibit high degrees of flexibility and availability. Constraint-based
database caching (CbDBC) is one of the most ambitious approaches to
reach these goals, because it is able to dynamically respond to work-
load changes and keep subsets of data near by the application. In turn,
caching of data always generates replicas whose consistency needs to be
controlled—for reasons of data independence, transparent for both appli-
cation and underlying DBMS. Hence, such a task can best be approached
by a middleware-based solution.
This paper discusses challenges arising when distributed replicas are syn-
chronized within CbDBC. We compare proposals using eager and lazy
update propagation and review their feasibility within middleware-based
realizations. Because constraints have to be maintained by the cache,
they restrict the implementation of concurrency control mechanisms.
Therefore, we explore, as a novel contribution, the far-reaching influence
of these constraints.

1 Motivation

Similar to concepts used for Web Caching, database caching keeps subsets of
records close to applications, which allows local and, hence, faster execution of
declarative queries. In contrast to Web caching only supporting ID-based queries,
database caching services set-oriented requests and must, therefore, verify that
the predicates used by SQL queries can be evaluated, i.e., that their predicate
extensions [12] are contained in the cache. To this end, constraint-based data-
base caching (CbDBC) uses simple constraints (cp. Section 2), which need to be
fulfilled at any time and allow to decide whether or not a predicate extension is
completely kept. Many database vendors have extended their systems with simi-
lar but less flexible ideas [1,2,21]. The most important competitor approach uses
materialized views to determine the predicate completeness of records cached
[16]. A big challenge of these approaches is replica control, because caching of
data always implies the existence of distributed replicas. In addition, database



caching has to guarantee transaction properties, so that the employed concur-
rency control mechanism is of special importance. Because database caching has
to solve exactly the problems occurring in (partially) replicated environments,
the research results of this area are used as a starting point to choose an ap-
propriate solution for CbDBC. Section 3 inspects the results and clarifies which
methods can be used for replica control and concurrency control (CC) for data-
base caching.

But, there is a major difference between caching and replication: the content
of a cache is managed dynamically, which is a great advantage. The caching
system can try to limit the number of replicas (regarding one data item) on
its own, so that the number of caches that need to be updated remains small,
even when many caches coexist. However, dynamic organization is the biggest
problem. The constraints used to determine completeness become inconsistent, if
updates are made. Therefore, applying an update requires additional refreshment
or invalidation steps to guarantee consistency. Section 4 describes the problems
arising for the constraint-based database caching approach.

Our CbDBC prototype ACCache [5] is realized as a middleware-based solu-
tion and, up to now, independent of a specific database system. We try to pre-
serve this property and, hence, we explore the feasibility of various middleware-
based approaches (cp. Section 5). But in doing so, we rely on the concurrency
control of the underlying database system. First, we try to realize lazy update
propagation being highly desired, before we explore eager approaches. Regarding
schemes with lazy update propagation, we demonstrate that a middleware-based
solution is only realizable providing limited functionality, so that just read-only
transactions can be executed . Based on this observation, we explore eager ap-
proaches (cp. Section 5.2) which enable the cache to accelerate any read state-
ment (also of writer transactions). Eager solutions, however, have to use RCC
value locks (introduced in Section 4) to speed-up commit processing, which are
not needed in lazy solutions.

The following section describes the constraint-based approach in more detail
and repeats the most important concepts just for comprehension.

2 Constraint-based Database Caching

A constraint-based database cache stores records of predicate extensions in so-
called cache tables. The records are retrieved from a primary database system
called backend. Each cache table T belongs to exactly one backend table TB
and, hence, their definitions are equivalent, except for foreign key constraints,
which are not adopted. The tables and constraints maintained by a cache are
represented as a so-called cache group.

A CbDBC system uses two different types of constraints to determine which
predicate extensions are completely contained in the cache: Referential Cache
Constraints (RCCs) and Filling Constraints (FCs). Both are defined using the
fundamental concept of value completeness.



Definition 1 (Value completeness). A value v is value-complete (or com-
plete for short) in a column T.a if and only if all records of σa=vTB are in T .

An RCC S.a → T.b is defined between a source column S.a and a target
column T.b (not necessarily different from S.a) to ensure value completeness
in T.b for all distinct values v in S.a. Please note, value completeness is just
given for the target column. This allows, e. g., to execute an equi-join S ona=b T
if value completeness is given for a value v in S (let us say for v in S.c), so
that σS.c=v(S ona=b T ) delivers the correct result. In the reverse case (value
completeness is given for a value v in T ), this join is could produce incomplete
results1.

Definition 2 (Referential cache constraint, RCC). A referential cache
constraint S.a→ T.b from a source column S.a to a target column T.b is satisfied
if and only if all values v in S.a are value-complete in T.b.

Fig. 1. The main components of a cache group and its internal representation.

An FC is defined on a single column (e. g., S.b) and determines when a
value v needs to be loaded completely. The loading is initialized as soon as a
query refers to v explicitly (e. g., through σS.b=vS) and v is in a set of values
to be loaded (called candidate values [12]). To implement the behavior of FC
S.b, we internally use a so-called control table (ctrl) and an RCC ctrl.id → S.b
(cp. Figure 1). Conceptually, we put the value v in the id column of the control
table. This violates RCC ctrl.id→ S.b and, hence, triggers maintenance, i.e., all
records σb=vSB have to be made available. In doing so, new RCC source-column
values in S arrive at the cache. This may violate outgoing RCCs which need to
be satisfied again. In this way, depending on the value we put into the control
table, the cache tables need to be filled-up in a consistent way.

Because of the special importance of values kept in an RCC source column,
we denote such values as control values [15]. As illustrated, the presence of
a control value (e. g., v) demands the availability of (recursively) dependent
records. Hence, we denote this set of records as closure of the control value v.

1 One reason that shows that an RCC is different from a foreign key.



Definition 3 (Closure of a control value). Let v be a control value of RCC
S.a → T.b and, thus, I = σa=vTB the set of records that have to be value-
complete. The closure of v is the set of records C(v) = I ∪ C(vi), ∀vi ∈ V (I),
where V (I) = (v1, ..., vn) denotes the control values included in I.

Both constraint types (FCs and RCCs) are used to determine if a set of
records currently stored in the cache is value-complete. Values of unique columns
are implicitly, i.e., always complete. With help of this simple concept, it becomes
possible to decide if predicates are completely covered by the cache and, hence,
whether queries can be executed locally or not.

3 Preliminary Considerations

The main challenge regarding a replicated database environment is replica con-
trol. Typically used to control read-intensive workloads2, our approach is based
on a “read one replica write all (available) replicas” (ROWA(A)) schema. In
the seminal paper of Gray et al. [8], replication techniques are classified by two
parameters. The first parameter specifies where updates can be executed, at a
primary copy or everywhere.

With database caching, caches temporarily hold data from a primary data
source maintaining the consistency of all data items [12]. This so-called backend
defines the schema that is visible to the user, whereas the caches as in-between
components remain transparent. In contrast to replication, a primary copy ap-
proach fits into such a system architecture in a natural way, where the backend
performs all updates and propagates them to the caches (if needed).

However, the given system architecture extremely complicates an update-
everywhere solution. An important problem is that a cache cannot decide if an
update violates constraints defined at the backend database, because it does not
store any foreign-key constraints, check constraints, definitions for tables not
present, triggers, or other information needed. All this meta-information had
to be available to perform updates, so that cache maintenance could be done
locally. In addition, update everywhere requires complex concurrency control or
conflict resolution [8]; therefore, we strongly recommend the use of a primary
copy approach where updates are always forwarded to the backend.

The second parameter introduced in Gray’s paper [8] describes when replicas
are refreshed, which can be done in eager or lazy fashion. In eager approaches, the
changes of a transaction are propagated to all replicas before commit, whereas
in lazy approaches the propagation may take place after commit. Because eager
solutions delay transaction execution and lazy solutions have to deal with consis-
tency problems, the most recent approaches (e. g., [3,11,14,17,22]) are designed
as interim solutions, providing a well-defined isolation level and a so-called hybrid
propagation, where, on the one hand, transactions accessing the same replicas do
coordinate before commit (eager) and, on the other hand, successful commit of a
replica is acknowledged to the client (lazy update propagation). In Section 5, we

2 This can be generally assumed in scenarios where database caching takes place.



illustrate that, using database caching, it is possible to apply lazy update prop-
agation without consistency problems. Hence, we can use an approach where
commit is acknowledged to the client as soon as the transaction updates are
committed at the backend database, while caches are updated lazily.

However, update propagation must be combined with an adequate CC mech-
anism [17,22]. As the most important requirement when choosing or rather de-
veloping a tailor-made CC policy for CbDBC, the chosen mechanism should
preserve a caching benefit, i. e., the performance gained from local query evalua-
tion should not be outbalanced by cache maintenance. If the approach needs to
access remotely maintained caches or the backend to perform read statements,
the caching benefit will be compromised. For that reason, read accesses should
never be blocked, e. g., to acquire distributed read locks as needed in a dis-
tributed two-phase locking (D2PL) approach. Another main problem for CC is
that database caching is designed to cache data near to applications and, hence,
caches are often allocated far away from the original data source, only reachable
via wide-area networks. For that reason, a comparatively high network latency
has to be anticipated to send CC messages (ca. 50–200 ms) and, thus, they must
be avoided if possible.

If we scan recent research for CC approaches that fulfill these basic require-
ments, we find that only optimistic CC schemes and approaches using snapshot
isolation (SI)3 [4,7] as its isolation level are sufficient (cp. Section 5). Another
possibility is to allow inconsistencies [9,10], but, first, the level of inconsistency
needs to be defined by developers within SQL statements and, second, such cache
systems do not scale if a high isolation level is required.

The preceding discussion clarifies that the basic assumptions and require-
ments of CbDBC dramatically decrease the number of viable approaches (for
replica control and concurrency control). Moreover, it should be easy to combine
the chosen approach for replica control with CC. Hence, our solutions provide
SI which facilitate a simple integration with eager and lazy update propagation
schemes.

In the following section, we examine the specific challenges that need to be
solved if we implement update propagation, i. e., from the backend to the caches
involved, within CbDBC.

4 Update Propagation

The process of propagating updates consists of three main tasks: gathering
changed records (capture), identifying and informing the caches which are af-
fected by changes (distribution), and accepting changes at the cache (accep-
tance).

3 SI is a multi-version concurrency control mechanism presenting to a transaction T
the DB state committed at EOT (T ). It does not guarantee serializable execution,
but it is supplied by Oracle and PostgreSQL for “Isolation Level Serializable” or in
Microsoft SQL Server as “Isolation Level Snapshot”.



Capture. ACCache can be used on top of any relational database system and
relies just on the SQL interface to implement its functionality. Provided by most
database systems [13,18,19,20], triggers or appropriate capture technology for
changed data is thus necessary. Eager approaches (cp. Section 5.2), therefore,
have to gather all changes of a transaction before commit. Lazy approaches, in
turn, allow to collect changes after commit. Such an approach can be handled
much more efficiently by log-sniffing techniques, which may be even processed
concurrently. The collected data must be provided as a write set (WS) that
includes at least the following information for each transaction: transaction id
(XId), begin-of-transaction (BOT ) timestamp, end-of-transaction (EOT or com-
mit) timestamp, and all records changed. Furthermore, each record is described
by an identifier (RId), the type of values included (VType := new values or old
values), the type of DML operation (DMLType := insert, update, or delete), and
the values themselves. For each update, two records (with old and new values)
are included.

Distribution. For each record in a WS, we need to decide whether or not some
of the connected caches have to be informed about the change. For this task,
ACCache provides a dedicated service (Change Distributor, CD) running at the
backend host. Depending on the meta-information maintained, a fine-grained or
just a coarse-grained solution is possible. We distinguish the following levels of
meta-information to be maintained:

– Cache Information. In this case, CD only knows that connected caches exist.
Therefore, its only option is to ship the whole WS to all of them. In most
cases, this level is not recommended, because, typically, just a few tables of
a schema are of interest and, hence, appear in a cache.

– Table Information. This level additionally keeps for each cache the names
of the cached tables. Therefore, selective shipment of the changed records is
possible.

– Cache Group Information. It expands table information by storing all cache
group definitions at the backend. Providing no additional help for the CD
service, all changed records still have to be shipped to a cached table. How-
ever, we differentiate between this level and table information, because the
backend can effectively assist loading policies using this additional informa-
tion (cp. prepared loading in [15]).

– Perfect Information. In this case, CD maintains a special hash-based index
to determine if a record is stored in a cache or not. With this support, it is
possible to check each record of the WS and ship just the currently stored
ones.

Obviously, perfect information enables a fine-grained selection of the records
that need to be shipped to a cache. But the meta-information maintained must
be continuously refreshed and needs to be consistent to ensure correctness. In
summary, perfect information unnecessarily stresses the backend host and, there-
fore, we suggest using table information or cache group information.



Fig. 2. Arrival of new control values (a), records losing their dependencies (b)

Acceptance. The most critical part of CbDBC is the dynamic and concurrent
acceptance of changes. Using “normal” replication, it is sufficient to reproduce
the changes of the primary copy to refresh a replica. Within CbDBC, a change,
for example, of value v to w may violate constraints and, therefore, changes in
a cache must be hidden until all constraints are satisfied. Because we internally
model FCs through RCCs (and control tables, cp. Section 2), we only need
to observe RCC violations. The only situation, where RCCs can be violated,
occurs when new control values reach the cache, i. e., during an update or insert.
Figure 2a gives an example for this situation. The WS of table Order Lines
includes a new record with RId = 10 that inserts the control value IId = 47
and an update for the record with RId = 5 changing the control value 11 to 22.
Hence, RCC Order Lines.IId→ Item.Id is no longer satisfied and the closures
of 22 and 47 need to be loaded first, before the WS can be accepted. In all other
cases, the RCCs remain valid, but some records may be unloaded, if no incoming
RCC implies their existence (cp. Figure 2b). Here, the delivered WS claims the
deletion of record with RId = 10 and signals an update from OId = 1 to OId = 5
for the record with RId = 5. After acceptance of these changes, the closure of
Orders.Id = 1 is empty and, thus, all records in the tables Order Lines and
Items should be unloaded.

Fig. 3. Accepting of changes (WS from Figure 2a) using RCC value locks.



Because the load of closures may be time consuming [15], commit processing
may be considerably delayed. To overcome this problem, we use RCC value locks
which indicate that, for a given RCC, some of the control values are not value-
complete at the moment. This allows us to accept updates as soon as all locks
are set (cp. Figure 3, where the same WS is applied as shown in Figure 2a).
These locks accelerate the processing of write sets, which is very important for
eager concurrency control schemes. However, RCC locks constrain the execution
of joins and, hence, using them with lazy approaches is not recommendable.

5 Concurrency Control

As described in Section 3, the most important requirement when choosing an
appropriate CC mechanism is to preserve the caching benefit. Middleware-based
solutions (like ACCache) are implemented on top of existing CC policies provided
by the underlying database system and have to regard their special properties.
Most restricting, a transaction T accessing these underlying systems has only
access to the latest transaction-consistent state valid at BOT (T ). Hence, we
denote this state as latest snapshot.

Observing current research activities, the simplest and, hence, most likely the
best way to preserve the caching benefit is to allow read accesses without taking
further actions, i. e., without retrieval of read locks, setting of timestamps, or
collecting of read sets (e. g., for an optimistic CC policy). This has been possible
since we know about the very powerful properties of SI, where reads are never
blocked. It allows a cache to execute any read statement from any transaction
without gathering information about elements read. However, to provide SI for
database caching, the same snapshot has to be maintained for all statements of
a transaction. Hence, this so-called global snapshot needs to be provided by a
cache in combination with the backend.

Fig. 4. Providing the same versions/snapshots either eager (a) or lazy (b).



This basic requirement can only be realized if either backend and caches
provide always the latest snapshot (eager, cp. Figure 4a) or the caches have
access to required snapshots at the backend (lazy, cp. Figure 4b).

In Figure 4, the point in time (represented through an integer value) when a
version is locally committed is given in parentheses. Because cache and backend
use their own local CC mechanisms, the timestamps assigned to the same version
by both sides will differ. A cache is always supported by local CC mechanism
providing SI and, hence, it maintains multiple versions. In the model for eager
update propagation (given by Figure 4a), all caches have to accept a transac-
tion’s WS logically at the same time. During lazy update propagation (reconsider
Figure 4b), caches maintain a queue of WSs that have to be applied in FIFO
(first in first out) order. The queue of Cache1 is currently empty and Cache2

has to accept at first WS(T2) and after that WS(T3).

In all further explanations, we mark a read-only user transaction Tj with
a subscript sr (e. g., Tsr1), if it executes just a single read, and with mr, if
the transaction consists of multiple read statements. Write transactions are not
differentiated any further.

Each user transaction is executed by a cache Ci and the backend where Ci

is the cache that took control over the user transaction. Hence, for each user
transaction Tj , the cache maintains a cache transaction T ca

j to access its local

data source (i. e., the cached data) and a backend transaction T be
j to access the

backend data. A cache transaction or a backend transaction not initiated by the
user is simply marked with its purpose (e. g., T load

j is used to load new cache
contents).

Regarding correctness, it is sufficient to prove that each user transaction Tj
realized with the aid of T ca

j and T be
j accesses the same snapshot Si, because all

changes are synchronized by the backend database.

Fig. 5. Refreshing of T load
1 to T load

2 .



5.1 Lazy update propagation

To allow lazy schemes, the only solution is to keep a backend transaction T load

open that allows reading the latest snapshot provided by the cache. Regardless
of the problems of realizing a user transaction (i. e., commit cannot be processed
without losing the link to the right snapshot), the refresh of such connections
(i. e., switching to the next transaction representing a new snapshot) is critical.
In addition, T load must be used to execute read statements of user transactions
that accesses the backend to reach the correct snapshot and because the commit
of T load is not permitted, the cache can just execute read-only user transactions.

Assume a cache retains a backend transaction T load
1 that reads a snapshot

representing the state before transactions T1 and T2 are finished (cp. Figure 5a).
To refresh T load

1 (e. g., after a short period of time), the cache creates a new
transaction T load

2 representing the state after commit of T1 and T2. Given that
the cache can arrange T load

2 (i. e., it can determine that BOT(T load
2 ) > EOT(T1)

and BOT(T load
2 ) > EOT(T2)), the cache has to accept the changes of WS(T1)

and WS(T2) (e. g., through a cache transaction T accept
1 ), before switching to T load

2

is possible (cp. Figure 5b).

In addition, while changes are accepted, new records need to be loaded (cp.
Section 4). The loading is still performed by T load

1 and, thus, newly loaded records
can recursively be affected by changes within WS(T1) and WS(T2). Hence, each
record loaded must be checked against WS(T1) and WS(T2) to ensure that all
changes get accepted correctly. Only if all changes within WS(T1) and WS(T2)
have been processed completely or the loading over T load

1 gets shortly suspended,
T accept
1 can be committed and T load

2 can be used for further processing. T load
1

is released as soon as no user transaction requires it anymore (i. e., if just user
transactions Tj with BOT(Tj) > BOT(T load

2 ) are executed by a cache).

Absolutely impossible is the usage of databases that apply pessimistic CC.
The retained transaction will cause deadlocks and after an induced abort the
state needed is no longer accessible.

Single-read transactions. To overcome the problem of accessing the same
snapshot at cache and backend, we can try to allow only single-read transactions
at the cache. We have to limit transactions to execute just one read statement,
because further statements may need backend access. This approaches restrict
the usage of the cache but, even in that case, lazy update propagation cannot
be realized, as our following example shows.

Figure 6 illustrates the situation mentioned before. Cache1 provides the
transaction-consistent state (snapshot) before T1 was committed, because the
WS of T1 is still available in the queue of WSs to be processed. For that rea-
son, the transactions Tsr6 and Tsr7 are logically executed before T1. Cache2 has
already applied WS(T1) and, hence, Tsr9 is after T1 and before T2. Assuming
that backend and caches provide serializability for their local transactions, the
transactions are also globally serializable, because writers are synchronized at
the backend. This concept appears to be realizable in a simple way. Caches



Fig. 6. Caches only executing single-read transactions.

could be lazily refreshed by accepting the WSs delivered as explained in Sec-
tion 4. However, global serializability is only guaranteed if caches always provide
a transaction-consistent state for its locally executed transactions.

The following example clarifies that this is not possible if only the latest
snapshot is accessible at the backend, because, then, necessary loading oper-
ations (e. g., triggered through the standard filling behavior or during update
acceptance) access different snapshots.

Considering Figure 7, we assume that the transaction T1 increases the total
amount of order 1 from 30 to 40 and of order 2 from 70 to 90. If we sum up
the total amounts of order 1 and 2 before T1 starts, we see a consistent state of
100; after commit of T1 the sum of 130 is correct. The cache shown in Figure 7
has already loaded order 1 and starts accepting changes in the WS of T1. Hence,
at that moment, it provides the state before T1. In this state, two single-read
transactions run before the acceptance of WS(T1) are finished. The first one,
Tsr1, selects the order 2 that is not kept by the cache but triggers the loading of
it. We assume that the loading occurs immediately and loads order 2, but now,
the loading operation accesses the snapshot after T1, because this is the latest
snapshot and T1 already committed at the backend. If the second transaction
Tsr2 now sums up the total amount of order 1 and 2, the answer given by the
cache is 120, which was never a consistent state at the backend.

As a result, we conclude that a middleware-based solution with lazy up-
date propagation can only be implemented on top of databases providing SI.
Middleware-based approaches cause a lot of limitations: Changes of multiple
write sets must be accepted together, only one transaction can be kept to access
the correct snapshot, concurrently loaded records need to be checked against
write sets, and the cache can just perform reads of read-only transactions.

Therefore, to support all read statements (also of writer transactions) at the
cache using a middleware-based solution, building an eager solution is manda-
tory.



Fig. 7. Loading operations construct an inconsistent state and cause chaos.

5.2 Eager Update Propagation

It is well known that eager solutions do not scale well, but within database
caching they have important advantages: As backend, they allow any kind of
database system providing SI4 and their realization does not cause changes at
the backend. In addition, if the locality at caches is very high5, updates mostly
affect only a very small number of caches (in the best case only one), so that
commit processing performance is acceptable even when many caches co-exist.
Subsequently, we explain the tailor-made commit procedure based on the well-
known two-phase commit (2PC) protocol. It can be easily integrated with the
update propagation described in Section 4 to reach a fully working concurrency
control. However, beyond the limited scalability, the realization of eager ap-
proaches pose problems that impede the cache.

Commit Processing. A 2PC protocol synchronizes the replicas before commit
and, thereby, guarantees that the backend and all caches provide only the latest
snapshot to the user. The most ambitious challenge is to prepare the caches,
so that the subsequent abort or commit message can be safely executed. But
first of all, we respond to error processing which can be substantially simplified
because cache databases do not need to be durable.

It allows us to commit transactions even if errors occur within the preparation
phase at caches. After sending the WSs to the affected caches, the backend
defines a period of time (timeout) in which the caches have to answer. If a
cache signals a failed prepare or is not answering, it is invalidated. That means,
all affected transactions are aborted. In the simplest case, a reinitialization is

4 For eager methods, a database system using pessimistic CC could also serve as
backend, in principle, but it may cause deadlocks that potentially affect performance.
In addition, its use limits the level of isolation, because transactions running in the
cache do not acquire read locks.

5 Using database caching, the system can try to reach this state through an adaptive
reorganization.



enforced (i. e., purging or restarting) to achieve a consistent state at failed caches.
At the end, the transaction and all caches in the prepared state can commit.

If the coordinator crashes, all running user transactions whose statements
need to be redirected to the backend are automatically aborted. Transactions
that were currently in the prepare phase are aborted after restarting the backend.
If the backend is available again, normal processing can be continued without
further adjustments. The last scenario nicely shows the improved fault tolerance
of the global system, because the data kept by the caches remains accessible in
case of a coordinator failure.

Preparation of Changes. When a cache receives a Prepare request of a user
transaction (e. g., T1), it has to process the corresponding WS(T1) as fast as
possible to shorten commit processing. Hence, loading of all records, needed to
remedy violated RCCs (cp. Section 4), would imply excessive costs. Moreover,
if an Abort message is received later, records were unnecessarily loaded. For
that reason, we start a cache transaction T accept

1 that accepts the changes and
assigns RCC value locks (cp. Figure 3) to all invalidated control values. As a
result, the control values locked are invisible for probing, i. e., they can not
be used to determine the completeness of records in target columns of RCCs
checked. Furthermore, an RCC holding value locks can not be used to perform
an equi-join.

As soon as all RCC value locks are applied, the cache sends the Ready sig-
nal to the backend and waits for the Commit/Abort message. If an Abort is
received, the cache simply aborts T accept

1 and removes all RCC value locks pre-
viously assigned. After a Commit instruction, T accept

1 gets committed, too, and
a loading process is initiated for each RCC value lock, which reconstructs value
completeness for the control value and removes the lock.

Since the cache management system provides SI for its locally executed trans-
actions, the changes and locks assigned through T accept

1 are only visible for local
transactions T ca

i , whose BOT(T ca
i ) > BOT(T accept

1 ), so that transactions with
BOT(T ca

i ) < BOT(T accept
1 ) are not hindered.

Problems. Our proposal indicates how eager solutions should be designed for
CbDBC. To cover the entire spectrum of approaches, we explored other oppor-
tunities as well [6], but all of them need to invalidate records or control values,
which straiten the usage of cache contents.

But, furthermore, all proposals suffer from another important disadvantage:
All participating instances of the system have to logically commit at the same
time. If the backend would first commit (e. g., after having received all Prepare
messages), the updates of a transaction T at the backend are immediately visible.
But at the cache side, if the Commit instruction has not been received yet, T ’s
snapshot is still present. Hence, a user transaction (e. g., T2) initiating such a
situation may access different snapshots (cp. Figure 8a). Of course, this problem
can be simply avoided by redirecting requests from T2 to the backend using T be

2

after the cache sends Ready to the backend. And after receiving Commit, a cache



transaction T ca
2 can be initialized and used (cp. Figure 8b). But cache usage is

again prevented for transactions initiated in the meantime.
In summary, eager approaches do not scale and, thus, they should not be

used within wide-area networks.

Fig. 8. T2 can still access different snapshots (a) and is thus redirected (b).

6 Summary and Future Work

Using database caching, preserving the caching benefit is a superordinated re-
quirement. In order to fulfill it, we can only use CC policies that allow to read
the cached data without further coordination steps (e. g., accessing the backend
database to acquire read locks). Multi-version concurrency control mechanisms
providing SI (attached to the most recent database systems) offer almost perfect
properties to realize this high concurrency level in database caching and espe-
cially in CbDBC. Middleware-based realizations are indeed implementable, but
our observations clarify that they have some restrictions. The preferred lazy up-
date propagation only supports read-only transactions and using eager update
propagation, cache contents need to be temporarily locked. As a big drawback,
backend systems using pessimistic CC policies may seriously affect transaction
processing, because update acceptance in a cache triggers load operations that
may cause deadlocks.

With help of our examination, we found out that an integration of lazy update
propagation in a CC mechanism providing SI is realizable, but a middleware-
based solution is challenging and shows restrictions, because backend transac-
tions can only access the latest snapshot. Hence, we start implementing a closer
integration of both CC mechanisms used at backend and cache, so that the cache
has an influence of selecting the right snapshot for backend transactions.



References

1. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,
B.: Cache Tables: Paving the Way for an Adaptive Database Cache. In: VLDB
Conf. (2003), 718–729

2. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A Dynamic Data
Cache for Web Applications. In: ICDE Conf. (2003), 821–831

3. Amza, C., Cox, A., Zwaenepoel, W.: Distributed Versioning: Consistent Replica-
tion for Scaling Back-end Databases of Dynamic Content Sites. In: Proceedings of
the Fourth Middleware Conference (2003)

4. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
Critique of ANSI SQL Isolation Levels. In: SIGMOD Conference (1995), 1–10

5. Bühmann, A., Härder, T., Merker, C.: A Middleware-Based Approach to Database
Caching. In: ADBIS Conf., LNCS 4152, Springer (2006), 182–199

6. Braun, S.: Implementation and Analysis of Concurrency Control Policies for
Constraint-Based Database Caching (in German). Master’s thesis, TU Kaiser-
slautern (2008), http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/users/jklein/
documents/ 2008 Braun .DA.pdf

7. Fekete, A.: Snapshot Isolation. In: Ency. of Database Systems (2009), 2659–2664
8. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a

Solution. In: SIGMOD Conference (1996), 173–182
9. Guo, H., Larson, P.A., Ramakrishnan, R.: Caching with “Good Enough” Currency,

Consistency, and Completeness. In: VLDB, VLDB Endowment (2005), 457–468
10. Guo, H., Larson, P.A., Ramakrishnan, R., Goldstein, J.: Relaxed Currency and

Consistency: How to Say “Good Enough” in SQL. In: SIGMOD, ACM, New York,
NY, USA (2004), 815–826

11. Holliday, J., Agrawal, D., Abbadi, A.E.: The Performance of Database Replication
with Group Multicast. In: FTCS (1999), 158–165

12. Härder, T., Bühmann, A.: Value Complete, Column Complete, Predicate Complete
– Magic Words Driving the Design of Cache Groups. The VLDB Journal 17(4)
(2008) 805–826

13. IBM: InfoSphere Change Data Capture (2009), URL http://www-01.ibm.com/
software/data/infosphere/change-data-capture/

14. Jiménez-Peris, R., Patiño-Mart́ınez, M., Kemme, B., Alonso, G.: Improving the
Scalability of Fault-Tolerant Database Clusters. International Conference on Dis-
tributed Computing Systems (2002) 477

15. Klein, J., Braun, S.: Optimizing Maintenance of Constraint-Based Database
Caches. In: ADBIS (2009), 219–234

16. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent Mid-Tier Database
Caching in SQL Server. In: ICDE Conf. (2004), 177–189

17. Lin, Y., Kemme, B., Patiño-Mart́ınez, M., Jiménez-Peris, R.: Middleware-based
Data Replication providing Snapshot Isolation. In: SIGMOD (2005), 419–430

18. Microsoft Corporation: SQL Server 2008–Change Data Capture (2009), URL http:
//msdn.microsoft.com/en-us/library/bb522489.aspx

19. Oracle Corporation: Data Warehousing Guide–Change Data Capture (2009), URL
http://download.oracle.com/docs/cd/E11882 01/server.112/e10810.pdf

20. The PostgreSQL Global Development Group: Postgresql 8.4.3 Documentation–
Triggers (2009), URL http://www.postgresql.org/files/documentation/pdf/8.4/
postgresql-8.4.3-A4.pdf

21. The TimesTen Team: Mid-tier Caching: The TimesTen Approach. In: SIGMOD
Conf. (2002), 588–593

22. Wu, S., Kemme, B.: Postgres-R(SI): Combining Replica Control with Concurrency
Control based on Snapshot Isolation. In: ICDE (2005), 422–433


