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Abstract: Database caching accelerates access to frequently requested data of a remote
database (backend) by keeping subsets of records close to applications. Thereby,
the constraint-based approach primarily uses constraints to determine what predicate
extensions are complete and which queries can be answered. Equipping the back-
end with so-called complete knowledge about the caches’ configurations enables it to
make sufficient predictions about the contents stored in the caches. Furthermore, com-
plete knowledge obviates the unnecessarily high communication costs caused by the
currently supported simpler structural knowledge during update propagation. In addi-
tion, with complete knowledge it becomes possible to prepare the loading of contents
on backend side. This paper describes the basic requirements and proposes an index
structure that enables complete knowledge on the backend.

1 Motivation

Database caching accelerates access to data of a remote database system by providing
frequently requested data close to applications. Using constraint-based database caching
(CbDBC), a cache stores sets of records which represent predicate extensions whose con-
sistency is controlled and preserved by constraints. This enables a dynamic adaptation of
the cache contents to the evolving query workload, a behavior that cannot be assured by
approaches based on full-table caching or materialized views [LGZ04]. In CbDBC one
or more caches are connected to the primary copy which is managed by the backend. It
performs all database updates and propagates the needed changes to the cache instances.
Correct and efficient change propagation is an essential prerequisite for implementing a
global transaction control.

Without further assistance the backend cannot predict the subset of caches affected by a
certain change operation. It is therefore unable to avoid propagation to all caches, which
in turn provokes an unnecessary communication overhead. In order to achieve a targeted



propagation the backend needs to maintain information about the state of its connected
caches. We will show in section 3 that by providing the backend with complete knowledge
(metadata about the cache which allows to reconstruct its exact contents) it is enabled to
perform a precise preselection of change propagations, which leads to a reduced commu-
nication load. However, to keep this metadata consistent with the caches’ loading and
unloading behavior, it has to be accessed and modified very frequently. Therefore, we will
propose an index structure in section 4 which enables efficient look-up and maintenance
of this metadata. The following section will explain the required basics of CbDBC.

2 Principles of Constraint-based Database Caching

A CbDBC system caches records of predicate extensions from backend tables in related,
equally structured cache tables. A backend table T has a cache table TC assigned, which
only contains a logical subset of its data. Furthermore, the cache manages two kinds of
constraints: filling columns (FC) and referential cache constraints (RCC). Both constraints
are defined using the concept of value completeness: The value v in a column TC.a is value
complete if and only if all records of the related backend table T containing v are present
in the cache table TC [HB07]. The set of all cache tables and constraints is called cache
group.

An RCC SC.s → TC.t defines a constraint in a cache group between two cache table
columns, where the column SC.s is called source column and the column TC.t is the
target column. An RCC is satisfied if and only if all values v in the source column are
value complete in the target column. So a value v appearing in the source column implies
value completeness of v in the target column [Bra08].

Filling columns control the process of loading values into the cache. A query referencing
in a filling column TC.f a value v, which is a member of the set of loadable values K,
triggers the loading of v to make it value complete in TC.f . If TC.f has outgoing RCCs,
the loading of records needs to be recursively continued to preserve all affected constraints
[BHM06, KBM09].

3 Advantage of complete knowledge

The ACCache project has implemented a middleware-based CbDBC prototype [BHM06].
For consistency control a primary-copy strategy is used in which all writing operations
take place in the backend. A component called Write Set Manager captures all changes
which occur in the backend database within a transaction and maintains information about
them in a data structure called Write Set (WS), which is used for the pinpointed propagation
to the affected cache instances [THK09].

Since a cache only stores a subset of the backend data, propagation of all changes to all
caches (and consequently to unaffected caches) would cause substantial, but unnecessary



communications. If the backend just knows the definition of each cache group (structural
knowledge), it can only perform a coarse-grained selection of records. For both update and
delete operations, false positives can occur whenever a certain cache contains an affected
table, but no affected records for it. To enable a more fine-grained and accurate preselec-
tion, the backend needs additional knowledge about the records stored in each cache. To
provide efficient look-up of these extended metadata (complete knowledge), the backend
maintains an index structure which can deliver for every modified record an indication of
the caches storing it. Thus, for a given WS, all affected caches can be detected.

Moreover, the additional task of handling the loading and unloading behavior of caches
[KBM09] can benefit from this index structure. The index structure can be used to deter-
mine the set of records which have to be loaded or unloaded. Given a certain RCC and
its source column, it is easy to identify the records that have to be present in the target
column due to value completeness. Therefore, RCC metadata has to be included in the
index structure, which will be shown in the remainder of this paper.

4 Implementation of complete knowledge

As seen in the previous section, complete knowledge is used to identify the exact set of
caches which are affected by the data manipulation operations contained in a WS. This
task is supported by a hash-based index structure, which allows fast and direct access to
the requested metadata. In order to avoid duplication of records, the implementation only
indexes row identifiers (RowIDs) provided by the underlying DBMS. For each table, a
separate index is maintained.

Figure 1a gives an example where, for the given table name CUSTOMER and the given
RowID 3 (both are provided by the WS), all caches containing this record are identified.
In this example, cache 1 and cache 2 are affected and so the change information will only
be propagated to these two caches instead of all. The determination of the record set to
be loaded in order to satisfy the RCC requirements—the second task mentioned in the
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Figure 1: Sample situations of index use: a) identification of caches affected; b) determination of an
RCC-based record set



previous section—uses the same index structure in a reverse way. Figure 1b illustrates
this scenario: For the given table name CUSTOMER and cache 1, all RowIDs, which are
implied by an RCC, are found.

A particular challenge is to keep this structure consistent with the cache contents. When-
ever a cache instance unloads a subset of records, this information needs to be propagated
to the backend. In this case of unloading, the adjustment of the index can be handled in a
lazy way, because a temporary inconsistency only results in an unnecessary communica-
tion overhead as mentioned before. In the case of loading, however, this adjustment has
to be applied immediately, because the backend must ensure that all changes needed in a
specific cache instance are delivered in time to guarantee correct cache-evaluated query
results.

5 Conclusion

As we have shown, complete knowledge avoids unnecessary communication. The pre-
sented index structure allows the identification of the exact set of affected caches for each
change recorded in a WS. By using this index, the change propagation can be performed in
an efficient way, which is an important basis for implementing a global transaction control
mechanism. Additionally, the index structure helps to select the exact subset of records
that needs to be loaded into the cache at the backend side. A mechanism called prepared
loading [KBM09] can be implemented more efficiently.

It still has to be explored whether the additional administrative overhead caused by the
index maintenance is justified by the saved communication overhead. Therefore, a perfor-
mance analysis evaluating the benefits of different knowledge levels at the backend side
will be subject of future research.
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