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Abstract. Data warehouses are traditionally refreshed in a periodic
manner, most often on a daily basis. Thus, there is some delay between a
business transaction and its appearance in the data warehouse. The most
recent data is trapped in the operational sources where it is unavailable
for analysis. For timely decision making, today’s business users asks for
ever fresher data.
Near real-time data warehousing addresses this challenge by shortening
the data warehouse refreshment intervals and hence, delivering source
data to the data warehouse with lower latency. One consequence is that
data warehouse refreshment can no longer be performed in off-peak hours
only. In particular, the source data may be changed concurrently to data
warehouse refreshment. In this paper we show that anomalies may arise
under these circumstances leading to an inconsistent state of the data
warehouse and we propose approaches to avoid refreshment anomalies.
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1 Near Real-Time Data Warehousing

Data warehousing is a prominent approach to materialized data integration.
Data of interest, scattered across multiple heterogeneous sources is integrated
into a central database system referred to as the data warehouse. Data integra-
tion proceeds in three steps: Data of interest is first extracted from the sources,
subsequently transformed and cleansed, and finally loaded into the data ware-
house. Dedicated systems referred to as Extract-Transform-Load (ETL) tools
have been built to support these data integration steps.

The data warehouse facilitates complex data analyses without placing a bur-
den on the operational source systems that run the day-to-day business. In order
to catch up with data changes in the operational sources, the data warehouse
is refreshed in a periodic manner, usually on a daily basis. Data warehouse re-
freshment is typically scheduled for off-peak hours where both, the operational
sources and the data warehouse experience low load conditions, e.g. at night-
time. In summary, the traditional data warehouse stores historical data as of
yesterday while current data is available in the operational systems only.
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Today’s business users, however, demand for up-to-date data analyses to sup-
port timely decision making. A workable solution to this challenge is shortening
the data warehouse loading cycles. This approach is referred to as near real-
time data warehousing or microbatch ETL [4]. In contrast to “true” real-time
solutions this approach builds on the mature and proven ETL system and does
not require the re-implementation of the transformation logic. The major chal-
lenge of near real-time data warehousing is that data warehouse refreshment can
no longer be postponed to off-peak hours. In particular, changes to the opera-
tional sources and data warehouse refreshment may happen concurrently, i.e.
the ETL system cannot assume the source data to remain stable throughout the
extraction phase. We show that anomalies may occur under these circumstances
causing the data warehouse to end up in an incorrect state. Thus, special care
must be taken when attempting to use traditional ETL jobs for near-real time
data warehousing. In this paper, we propose several approaches to prevent data
warehouse refreshment anomalies and discuss their respective advantages and
drawbacks.

The remainder of this paper is structured as follows: In Section 2 we discuss
related work on data warehouse refreshment anomalies. In Section 3 we briefly
explain the concept of incremental loading and present examples for refreshment
anomalies. In Section 4 we discuss properties of operational sources and present
a classification. In Section 5 we then propose several approaches to prevent
refreshment anomalies for specific classes of sources and conclude in Section 6.

2 Related Work

Zhuge et al. first recognized the possibility of warehouse refreshment anoma-
lies in their seminal work on view maintenance in a warehousing environment
[7]. To tackle this problem the authors proposed the Eager Compensating Algo-
rithm (ECA) and later the Strobe family of algorithms [8]. The ECA algorithm
targets at general Select-Project-Join (SPJ) views with bag semantics over a
single remote data source. The Strobe family of algorithms is designed for a
multi-source environment but more restrictive in terms of the view definitions
supported. Strobe is applicable to SPJ views with set semantics including the
key attributes of all base relations only. The basic idea behind both, the ECA
algorithm and the Strobe family of algorithms is to keep track of source changes
that occur during data warehouse refreshment and perform compensation to
avoid the occurrence of anomalies.

The major difference between the ECA algorithm and the Strobe family
lies in the way compensation is performed. ECA relies on compensation queries
that are sent back to the sources to offset the effect of changes that occurred
concurrently to data warehouse refreshment. In contrast, Strobe performs com-
pensation locally, exploiting the fact that the warehouse view includes all key
attributes of the source relations.

Both algorithms are tailored for a specific class of data sources: It is assumed
that the sources actively notify the data warehouse about changes, as soon as
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they occur. Furthermore, for ECA the sources need to be able (and willing) to
evaluate SPJ queries issued by the data warehouse for compensation purposes.
In this paper, we extend the discussion on data warehouse refreshment anomalies
to other classes of data sources with different properties.

The ECA algorithm and the Strobe family of algorithms are rather complex.
It is necessary to track unanswered queries sent to the sources, detect source
changes that occurred concurrently to query evaluation, construct compensating
queries, or perform local compensation of previous query results.1 In particular,
the algorithms are designed for a message-oriented data exchange with the source
systems. State-of-the-art ETL tools, however, allow for the implementation and
execution of rather simple data flows only. The underlying model is most often a
directed, acyclic graph where the edges indicate the flow of data and the nodes
represent various transformation operators provided by the ETL tool. Further-
more, ETL tools are not built for message-oriented data exchange but rather
for processing data in large batches. Therefore, we do not see any possibility
to implement either ECA nor Strobe using a state-of-the-art ETL tool. Future
real-time ETL tools may well offer such advanced features, if there will be a
convergence between ETL and EAI technologies. However, for the time being
other approaches need to be considered to achieve near real-time capabilities. In
this paper we discuss approaches to near real-time data warehouse refreshment
that can be realized with state-of-the-art ETL tools.

3 Data Warehouse Refreshment Anomalies

In this section we provide examples to illustrate potential data warehouse re-
freshment anomalies. Throughout the paper, we use the relational model with set
semantics for data and the canonical relational algebra for the description of an
ETL job’s transformation logic. We believe that this model captures the essen-
tials of ETL processing2 and is appropriate for the discussion of data warehouse
refreshment anomalies.

Suppose there are two operational sources storing information about our
customers and our sales representatives in the relations C and S, respectively,
as shown in Figure 1. Table C stores the names of our customers and the city
they live in while table S stores the names of our sales representatives and the
city they are responsible for. Name values are assumed to be unique in both
tables. Suppose we want to track the relationships between sales representatives
and customers at the data warehouse using the table V . For this purpose, we
employ an ETL job E that performs a natural join of C and S, i.e. E : V =
C onC.city=S.city S. The first population of a data warehouse is referred to as
initial load. During an initial load, data from the sources is fully extracted,
1 A pseudo code outline is presented in [7] and [8].
2 Taking the IBM InfoSphere DataStage ETL tool as an example, the relational al-

gebra roughly covers two-thirds of the transformation operators (so called stages)
available.
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Fig. 1. Sample ETL job for initial loading

transformed, and delivered to the data warehouse. Thus, the warehouse table V
initially contains a single tuple [adam, kl, bob].

As source data changes over time, the data warehouse gets stale, and hence,
needs to be refreshed. Data warehouse refreshment is typically performed on a
periodical basis. The naive approach is to simply rerun the initial load job, col-
lect the resulting data, and compare it to the data warehouse content to detect
changes.3 This approach is referred to as full reloading and is obviously ineffi-
cient. Most often just a fraction of source data has changed and it is desirable
to propagate just the changes to the data warehouse. This approach is known as
incremental loading. ETL jobs for intial loading cannot be reused for incremental
loading. In fact, incremental loading requires the design of additional ETL jobs
dedicated to that purpose.

In [2, 3] we proposed an approach to derive ETL jobs for incremental loading
from given ETL jobs for initial loading. We first identified distinguishing char-
acteristics of the ETL environment, most notably properties of Change Data
Capture mechanism at the sources and properties of the loading facility at the
data warehouse. We then adapted change propagation approaches for the main-
tenance of materialized views to the ETL environment. However, data warehouse
refreshment anomalies occur irrespective of the actual change propagation ap-
proach. For the reader’s convenience, we ignore some aspects discussed in [2, 3]
here and keep the sample ETL jobs presented below as simple as possible.

Suppose there are two relations 4C and OC that contain the insertions and
deletions to C that occurred since the last loading cycle, respectively. Similarly,
suppose there are two relations 4S and OS that contain the insertions and
deletions to S, respectively. We refer to data about changes to base relations as
change data. Incremental loading can be performed using two ETL jobs: The
first job E4 is used to propagate insertions and can be defined as E4 : 4V =
(Cnew on 4S) ∪ (4C on Snew) where Cnew and Snew denote the current state of
C and S, respectively, i.e. the changes took effect in these relations. The idea is
3 Note that it is impractical to drop and reload the target tables because the data

warehouse typically keeps a history of data changes. This aspect of data warehousing
is, however, not relevant to the discussion of refreshment anomalies and therefore
ignored in this paper.
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Fig. 2. Sample ETL jobs for incremental loading

to look for each inserted tuple 4C and 4S if matching tuples are found in the
respective base relations Snew and Cnew. Note that it is not required to join 4C
with 4S since the changes already took effect in the base relations.

In a similar way, an ETL job to propagate deletions can be designed. In
the expression above we could simply replace 4C by OC, 4S by OS, Cnew by
Cold, and Snew by Sold, where Cold and Sold denote the initial state of C and S,
i.e. the changes did not take effect in these relations yet. However, operational
sources usually cannot provide relations in their initial state, hence the ETL
job must do without. The ETL job EO to propagate deletions can be defined as
EO : OV = (Cnew on OS) ∪ (OC on Snew) ∪ (OC on OS). Note that we sometimes
“overestimate” the deletions OV in this way, but this does not pose a problem
here, since superfluous deletions of such tuples that are not in V do not take
effect. The ETL jobs for incremental loading are depicted in Figure 2.

Example 1. Data warehouse refreshment without anomalies.
Suppose the base relations C and S initially contain the tuples Cold = {[adam, kl]}
and Sold = {[bob, kl]}. Thus, the initial state of relation V at the data warehouse
is Vold = {[adam, kl, bob]}. Now suppose the tuple 4C = {[carl, kl]} is inserted
into C and the tuple OC = {[adam, kl]} is deleted from C. Thus, the current state
of C is Cnew = {[carl, kl]}. The state of S remained unchanged, i.e. Snew = Sold =
{[bob, kl]}. To refresh the data warehouse, the ETL jobs for incremental loading
E4 and EO are evaluated. E4 : 4V = (Cnew on 4S) ∪ (4C on Snew) results in
4V = {[carl, kl, bob]} and EO : OV = (Cnew on OS)∪ (OC on Snew)∪ (OC on OS)
evaluates to OV = {[adam, kl, bob]}. V is refreshed by adding 4V and sub-
tracting OV from its current state Vold. The new state of V is thus Vnew =
{[carl, kl, bob]}. This is the correct result, i.e. no anomalies occurred.

Example 2. Data warehouse refreshment with a deletion anomaly.
Again, suppose the initial states of the base relations are Cold = {[adam, kl]}
and Sold = {[bob, kl]}. Now suppose that the tuples [adam, kl] and [bob, kl] are
deleted from C and S, respectively. That is, C and S are empty in their current
states Cnew = {} and Snew = {}. For reasons we will discuss in detail in the
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subsequent sections, there may be some delay between the point in time changes
affect the base relations, and the point in time changes are captured and visible
in the corresponding change relation. Therefore, the ETL system may already
see the first deletion OC = {[adam, kl]} but it may not see the second deletion
yet, i.e. OS = {}. When the ETL job EO is executed it returns an empty set
OV = {}. The reason is that a matching tuple for OC = {[adam, kl]} is neither
found in Snew nor in OS since both relations are empty when the ETL job is
executed. At some later point in time, the remaining deletion will get visible, i.e.
OS will turn to {[bob, kl]}. However, because OC is now empty, the execution of
EO will again result in an empty set OV = {}. Relation V at the data warehouse
is therefore left unchanged in both loading cycles. This result is incorrect and
we speak of a deletion anomaly. Deletion anomalies arise when base tables are
affected by deletions that have not been captured by the time incremental loading
is performed.

Example 3. Data warehouse refreshment with an update anomaly.
Again, suppose the initial states of the base relations are Cold = {[adam, kl]}
and Sold = {[bob, kl]}. Now suppose that the tuple [adam, kl] in C is updated to
[adam, mz]. The current state of C is hence Cnew = {[adam,mz]}. Additionally, a
new tuple [carl,mz] is inserted into S, i.e. Snew = {[bob, kl] , [carl,mz]}. At some
point in time the change to S is captured and available in 4S = {[carl,mz]}.
However, suppose the change capture at C is delayed and both, 4C and OC
are empty up to now. When incremental loading is started in this situation
the ETL jobs E4 and EO will result in 4V = {[adam,mz, carl]} and OV = {},
respectively. In consequence, the new state of V after data warehouse refreshment
is Vnew = {[adam, kl, bob] , [adam, mz, carl]}. Recall that the name attribute of
C is assumed to be unique. Considering this, no state of the base relations
exist that yields to the state observed for V . Thus, V is inconsistent after data
warehouse refreshment and we speak of an update anomaly. Update anomalies
arise when base tables are affected by updates that have not been captured by the
time incremental loading is performed. Note that the resulting inconsistencies
are a temporary issue. Given that no other updates occur, the inconsistencies
are resolved in the subsequent loading cycle. Note that this is not the case for
inconsistencies arising from deletion anomalies.

After having seen an example for deletion and update anomalies one may ask
if there are insertion anomalies as well. In the strict sense, insertion anomalies
do exist. They arise from insertions that affected the base table but have not
been captured by the time incremental loading is performed. Insertion anomalies
cause the same tuple to be sent to the data warehouse multiple times in successive
loading cycles. Under set semantics, however, this does not lead to an inconsistent
data warehouse state. Therefore anomalies caused by insertions may not be
regarded as actual anomalies.
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4 Properties of Operational Data Sources

Incremental loading is the preferred approach to data warehouse refreshment
because it generally reduces the amount of data that has to be extracted, trans-
formed, and loaded by the ETL system. ETL jobs for incremental loading require
access to source data that has been changed since the previous loading cycle. For
this purpose, so called Change Data Capture (CDC) mechanisms at the sources
can be exploited, if available. Additionally, ETL jobs for incremental loading
potentially require access to the overall data content of the operational sources.

Operational data sources differ in the way data can be accessed. Likewise,
different CDC mechanisms may be available. In the remainder of this section
we present a classification of operational sources with regard to these properties
based on [4] and [6].

Snapshot sources Legacy and custom applications often lack a general purpose
query interface but allow for dumping data into the file system. The resulting
files provide a snapshot of the source’s state at the time of data extraction.
Change data can be inferred by comparing successive snapshots. This approach
is referred to as snapshot differential [5].

Logged sources There are operational sources that maintain a change log that
can be queried or inspected, so changes of interest can be retrieved. Several
implementation approaches for log-based CDC exist: If the operational source
provides active database capabilities such as triggers, change data can be written
to dedicated log tables. Using triggers, change data may be logged as part of
the original transaction that introduced the changes. Alternatively, triggers can
be specified to be deferred causing change data to be written in a separate
transaction.

Log-based CDC can also be implemented by means of application logic. In
this case, the application program that changes the back-end database is respon-
sible for writing the respective change data to the log table. Again, logging can
be performed either as part of the original transaction or on its own in a separate
transaction.

Database log scraping or log sniffing are two more CDC implementation
approaches worth being mentioned here [4]. The idea is to exploit the transaction
logs kept by the database system for backup and recovery. Using database-
specific utilities, changes of interest can be extracted from the transaction log.
The idea of log scraping is to parse archive log files. Log sniffing, in contrast,
polls the active log file and captures changes on the fly. While these techniques
have little impact on the source database, they involve some latency between
the original transaction and the changes being captured. Obviously, this latency
is higher for the log scraping approach.

In the remainder of this paper we will refer to those sources that log changes
as part of the original transaction as synchronously logged sources while we refer
to sources that do not have this property as asynchronously logged sources.
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Timestamped sources Operational source systems often maintain timestamp
columns to indicate the time tuples have been created or updated, i.e. when-
ever a tuple is changed it receives a fresh timestamp. Such timestamp columns
are referred to as audit columns [4]. Audit columns may serve as the selection
criteria to extract just those tuples that have been changed since the last loading
cycle. Note that deletions remain undetected though.

Lockable sources Operational sources may offer mechanism to lock their data to
prevent it from being modified. For instance, database table locks or file locks
may be used for this purpose.

5 Preventing Refreshment Anomalies

In Section 3 we have shown that refreshment anomalies cause the data warehouse
to become inconsistent with its sources. Analysis based on inconsistent data will
likely lead to wrong decisions being made, thus an inconsistent data warehouse
is of no use.

In this section we discuss approaches to prevent refreshment anomalies and
keep the data warehouse consistent. Refreshment anomalies occur for two rea-
sons.

– The ETL system sees base tables in a changed state but it does not see the
complete change data that lead to this state. Thus, there is a mismatch be-
tween the base table and its change data. Such a change data mismatch may
occur for two reasons. First, for several CDC techniques there is some la-
tency between the original change in the base relation and the change being
captured. Second, even in case the change is captured as part of the original
transaction, the ETL system may still see a mismatch: ETL jobs for incre-
mental loading often evaluate joins between base relations and change data
in a nested loop fashion. That is, the change data is first extracted and then
used in the outer loop. Subsequently, the operational source is queried for
matching tuples. When the base relation is not locked, it may be changed in
the meantime and the ETL system effectively sees a mismatch between the
extracted change data and the current base relation.

– The ETL jobs for incremental loading presented in Section 3 are based on
traditional change propagation principles. In particular, a mismatch between
the base relations and its change data is not anticipated.

Considering the two reasons that cause refreshment anomalies, there are two
basic approaches to prevent them: Either the ETL jobs can be prevented from
seeing a mismatch between a base relation and its change data or advanced ETL
jobs for incremental loading can be developed that work correctly in spite of the
change data mismatch. We will discuss both options in the remainder of this
section.
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5.1 Preventing a Change Data Mismatch

There are several approaches to prevent the ETL jobs from seeing a change data
mismatch. Which approach is applicable is largely determined by the properties
of the operational sources. We discuss options for each of the source classes
introduced in Section 4.

Snapshot Sources For snapshot sources the problem is trivially solved: In
each loading cycle, the ETL system request a snapshot of the sources’ current
state, i.e. the source data is extracted completely. The snapshot is stored at the
ETL tool’s working area, often referred to as staging area. The snapshot taken
during the previous loading cycle has been kept in the staging area and the ETL
system can now compute the snapshot differential by comparing the successive
snapshots. The process is depicted in Figure 3.

For incremental loading the ETL system does not query the operational
sources directly. Instead, queries are issued against the snapshots in the stag-
ing area. Once taken, snapshots obviously remain unchanged. Therefore, the
ETL jobs will not see change data mismatches and data warehouse refreshment
anomalies will not occur.

In the discussion on incremental loading in Section 3 we assumed that the
base relations are available in their current state only. Hence, we designed ETL
jobs in a way such that access to the initial state is not required. Here, snapshots
of the current and the initial state are available in the staging area. Thus, we can
design ETL jobs for incremental loading that rely on both states. The benefit is
that the required change propagation logic is generally simpler in this case, i.e.
the ETL job can be implemented using fewer operators as suggested in Section 3.

Computing snapshot differentials is straightforward and prevents refreshment
anomalies. However, this approach has severe drawbacks: Taking snapshots is ex-
pensive; large volumes of data have to be extracted and sent over the network.
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This may be acceptable in off-peak hours but is not an option when the oper-
ational systems are busy. Furthermore the ETL system is required to compute
snapshot differentials which is again expensive [5] and the storage cost at the
staging area is high; roughly double the size of all relevant base relations is re-
quired. In summary, the snapshot differentials approach does not scale well to
short loading cycles that facilitate near real-time data warehousing.

Logged Sources Logged sources maintain a change log that can be queried
by the ETL system. In this way, the ETL system can extract the changes that
occurred since the previous loading cycle.

As we have seen, refreshment anomalies arise from a mismatch between the
state of the base relations and the change data in the log. That is, there are two
options to avoid a change data mismatch and thus rule out refreshment anoma-
lies: It can either be ensured that 1) the operational sources are not changed
during incremental loading, or 2) a copy of the base relation can be maintained
in the staging area.

The first approach is feasible when the logged source is lockable. Special
care must be taken when the source is logged asynchronously. Then there is
some latency between the original change and the corresponding log entry. Thus,
simply locking the base table cannot avoid a change data mismatch because
changes that occurred before the lock was placed may not have been written to
the change capture log yet. If there is no mechanism to “flush” the change log
after the base relations have been locked, this approach cannot avoid refreshment
anomalies in the general case. The drawback of locking operational sources is
obvious: For the duration of incremental loading, all writing transactions at the
sources are blocked. This may not be acceptable apart from off-peak hours.

The second strategy to avoid a change data mismatch for logged sources is to
maintain copies of the relevant base relations in the staging area. This comes at
the cost of additional storage space but minimizes the impact on the operational
sources.
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At the beginning of a loading cycle the ETL system queries the sources for
change data. No other queries are issued towards the sources for the rest of
the loading cycle. The change data is used by the ETL system in two ways as
shown in Figure 4. First, it serves as the input for the ETL jobs for incremental
loading. Second, it is used to maintain the local copy of the base relation. The
maintenance can either be performed right away before the ETL jobs are started
or after the ETL jobs are finished. In the former case the ETL jobs see a copy of
the initial state of the base relations, in the latter case the ETL jobs see a copy
of the current state of the base relations. The ETL jobs need to be tailored to
one or the other case.

Keeping copies of base relations in the staging area avoids refreshment
anomalies for both, synchronous and asynchronous logged sources. In the asyn-
chronous case there may be some latency between the base relation change and
the corresponding log entry. Consequently, changes that have not been logged
by the time the loading cycle begins will not be considered for maintaining the
staged copy. That is, the state of the copy may lag behind the state of the base
relation. However, the copies are always consistent with the extracted change
data, thus a change data mismatch cannot occur.

In many cases it is not required to stage copies of entire base relations: The
base relations may contain attributes that are not included in the data ware-
house schema. Such columns are dropped during ETL processing by means of
a projection operator. Furthermore, only source tuples that satisfy given predi-
cates may be relevant to the data warehouse. In this case, the ETL job contains
a selection operator that discards tuples not satisfying the predicate. To save
storage space in the staging area the copies of base relations can be restricted to
relevant attributes and tuples. Therefore, the ETL job’s projection and selection
operators are “pushed down” and directly applied to the change data while it
is transferred to the staging area as depicted in Figure 4. The staged copies are
Select-Project (SP) views in the sense of [1] and must be maintainable using only
the change data extracted from the sources. In [1] it has been shown that SP
views are always self-maintainable with respect to insertions. A sufficient con-
dition for self-maintainability of SP views with regard to deletions is to retain
the key attributes in the view. Therefore any staged copy should contain the key
attributes of its base relation even if they are not part of the data warehouse
schema.

Compared to other approaches discussed so far, staging copies of base rela-
tions has several advantages: Most importantly, the impact on the operational
sources is minimal. Only small volumes of data need to be extracted in each load-
ing cycle and the sources are not burdened in any other way. The disadvantage
is the additional storage space required at the staging area.

Timestamped Sources In timestamped sources, changes are captured by
querying for tuples with a timestamp later than the latest timestamp, seen dur-
ing the last loading cycle. Recall that deletions cannot be detected in this way.
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Thus, only insertions (and updates4) can be propagated to the data warehouse.
This restriction is well acceptable when historical data is kept in the data ware-
house as is most often the case. A change data mismatch can occur when the
ETL system needs to query the operational sources during incremental loading.
The ETL system may then see changes to the base relations that occurred after
the change data was extracted.

If the timestamped source is lockable, the change data mismatch can be
avoided by locking the base relations while incremental loading is performed.
Locks must be acquired before the change data is extracted and must not be re-
leased until all queries towards the respective base relation have been answered.
As mentioned before, locking operational systems seriously interferes with busi-
ness transaction processing.

To minimize the impact on the operational systems and avoid refreshment
anomalies at the same time we proposed to stage copies of the base relations in
the discussion on logged sources before. This approach, however, poses problems
for timestamped sources. Recall that deletions remain undetected when audit
columns are used for change capture. Hence deletions cannot be propagated to
the staged copies and the staged copies grow steadily. Even worse, change prop-
agation is skewed in a subtle way: Tuples that have been deleted from the base
relations remain in the staged copies and thus influence the change propagation.
In this way, changes propagated to the warehouse may partly arise from tuples
that do no longer exist in the sources. If the data warehouse keeps a history of
changes this is undesirable. We illustrate this effect with an example.

Example 4. Reconsider the sample source and target schemas introduced in
Section 3. Again, suppose the initial states of the base relations are Cold =
{[adam, kl]} and Sold = {[bob, kl]}. Now suppose that the tuple [adam, kl] is
deleted. Since deletion cannot be detected here, no change is propagated to the
warehouse. This is all right if the warehouse is supposed to keep historical data.
Say, a new tuple 4S = {[charly, kl]} is inserted into S. Then the ETL job E4
will result in 4V = {[adam, kl, charly]} because the deleted tuple is retained in
the staged copy of C. However, Adam was never responsible for Charly, thus the
data warehouse’s history is falsified.

In summary, staging copies of timestamped sources should be used with caution.
First, the staged copies grow in size steadily and second, change propagation may
be skewed in a subtle way.

5.2 Making Change Propagation Anomaly-Proof

In the beginning of this section we identified two reasons that cause refresh-
ment anomalies. First, anomalies may arise from a change data mismatch; we
discussed approaches to avoid this in the previous section. Second, the ETL jobs
4 The insertion of a tuple with a primary key value that already exists in the warehouse

relation simply overwrites the existing tuple and can hence be seen as an update,
though it lacks its deletions counterpart here.
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for incremental loading rely on traditional change propagation mechanisms. In
this section we propose “anomaly-proof” change propagation approaches that
work correctly in spite of a change data mismatch and can be implemented us-
ing state-of-the-art ETL tools. In particular, we are interested in solutions that
neither lock operational sources nor maintain data copies in the staging area.

All solutions discussed in the previous section guarantee that data warehouse
refreshment is done correctly. Without having defined it explicitly, by correct-
ness we mean that incremental loading always leads to the same data warehouse
state as full reloading would do. Some approaches proposed in this section do
not achieve this levels of correctness. Depending on the data warehousing ap-
plication, lower levels of correctness may be acceptable. Therefore we define a
hierarchy of correctness levels based on [7] that allows us to classify the ap-
proaches proposed in the remainder of this section.

– Convergence: For each sequence of source changes and each sequence of in-
cremental loads, after all changes have been captured and no other changes
occurred in the meantime, a final incremental load leads to the same data
warehouse state as a full reload would do. However, the data warehouse may
pass through intermediary states that would not appear, if it was fully reloaded
in each loading cycle.

– Weak Consistency: Convergence holds and for each data warehouse state
reached after incremental loading, there are valid source states such that full
reloading led to this state of the data warehouse.

– Consistency: For each sequence of source changes and each sequence of loading
cycles, incremental loading leads to the same data warehouse state as full
reloading would do.

To satisfy the convergence property a data warehouse refreshment approach
must avoid deletion anomalies. However, it may permit for update anomalies
because they appear only temporarily and are resolved in subsequent loading
cycles. To satisfy the weak consistency property a refreshment approach must
not allow for update anomalies. As demonstrated in Example 3 in Section 3 an
update anomaly may lead to a data warehouse state that does not correspond
to any valid state of the sources. This is contradictory to the definition above.
Note that all data warehouse refreshment approaches discussed in the previous
section satisfy the consistency property.

Logged Sources Synchronously logged sources capture changes as part of the
original transaction. A change data mismatch may still occur, when the ETL
system runs separate transactions to extract change data and query the base
relations. Using global transactions instead, the change data mismatch can be
avoided. However, global transactions acquire locks on the base relations for
the duration of incremental loading. We discussed this approach in the previous
section and identified the drawbacks of locking.

Reconsider the sample ETL job for incremental loading presented in Sec-
tion 3, E4 : 4V = (Cnew on 4S)∪(4C on Snew). Since4C and4S are typically
much smaller than C and S, it is appropriate to evaluate the joins in a nested
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loop fashion.5 In this way only matching tuples need to be extracted from the
base relations. When the ETL job is started, the ETL system first extracts the
change data 4C and 4S. These datasets are used in the outer loop of the join
operators. Hence, for each tuple in 4C and 4S, one query is issued towards
the base relations S and C, respectively. Each query is evaluated in a separate
transaction, i.e. the locks acquired at the operational sources are released early.
Changes to C and S that occur after the change data has been extracted and
before the last query was answered, result in a change data mismatch and may
thus lead to refreshment anomalies.

To avoid the change data mismatch, the ETL system may use information
from the change log to “compensate” for base relation changes that happen
concurrently with incremental loading. Say, the previous incremental load was
performed at time t1 and the current incremental load is started at time t2.
When the ETL job E4 is started, the ETL system first extracts the changes to
C and S for the time interval from t1 to t2, denoted as 4C [t1, t2] and 4S [t1, t2],
respectively. Once this is done, the ETL system starts to issue queries against the
base relations C and S to evaluate the joins. The state of C and S may change
at any time, thus query answers may contain unexpected tuples (inserted after
t2) or lack expected tuples (deleted after t2). To avoid this, the ETL system can
use the change log to compensate for changes that occurred after t2. Instead
of querying C and S directly, the ETL system can issue queries against the
expressions C \ 4C [t2, now] ∪ OC [t2, now] and S \ 4S [t2, now] ∪ OS [t2, now],
respectively. In this way, the query answers will neither contain tuples inserted
after t2 nor lack tuples deleted after t2.

For this approach to be feasible, the source system has to meet several prereq-
uisites: It must be capable of evaluating the compensation expression locally and
in a single transaction. Furthermore, the source must be logged synchronously
and it must be possible to “browse” the change log instead of reading it in a
destructive manner. If these prerequisites are met, the outlined approach avoids
refreshment anomalies and satisfies the consistency property.

For synchronously logged sources that do not meet these prerequisites or
asynchronously logged sources, we do not see any possibility to achieve consis-
tency using state-of-the-art ETL tools, unless staging copies of base relations
is an option. However, there is a way to achieve convergence. Recall that the
convergence property precludes deletion anomalies while it allows for update
anomalies. Thus, making the deletion propagation anomaly-proof is sufficient
to achieve convergence. No modifications with regard to the propagation of in-
sertions are required. Consider the sample ETL jobs for incremental loading
presented in Section 3 again. To achieve convergence, we need to modify EO in
a way such that deletions are correctly propagated in spite of a change data
mismatch.

In [1] it has been shown that a sufficient condition for SPJ views to be self-
maintainable with respect to deletions is to retain all key attributes in the view.
Thus, deletions can be propagated to a data warehouse relation V , using only the
5 ETL tools typically allow the ETL developer to choose the physical join operator.
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change data and V itself, if V contains all key attributes of the base relations and
the ETL transformation logic consists of selection, projection, and join operators
only. In particular, querying base relations is not required for change propagation
and hence, a change data mismatch cannot occur.

Example 5. Reconsider Example 2 presented in Section 3 that shows a deletion
anomaly. The initial situation is given by Cold = {[adam, kl]}, Sold = {[bob, kl]},
Vold = {[adam, kl, bob]}, Cnew = {}, Snew = {}, OC = {[adam, kl]}, and OS =
{}. Note that there is a change data mismatch because the tuple [bob, kl] has
been deleted from S but OS is empty as yet. Since V includes the key attributes
cname and sname of both base relations, it is self-maintainable with respect to
deletions, thus deletions can be propagated using only OC, OS, and V itself. In
response to the deletion OC = {[adam, kl]} all tuples from V where cname =
′adam′ are deleted. In the example, [adam, kl, bob] is deleted from V . When the
deletion to S is eventually captured, OS turns into [bob, kl]. Now all tuples where
sname = ′bob′ are deleted from V . However, no such tuple is found in V . Finally
V is empty, which is the correct result.

In summary, for logged sources it is possible to refresh the data warehouse in-
crementally and satisfy the convergence property, if the data warehouse relation
includes all base relation key attributes.

Timestamped Sources As discussed before, change capture based on times-
tamps cannot detect deletions. This restriction is acceptable if we refrain from
propagating deletions to the data warehouse and keep historical data instead.
Deletion anomalies are not an issue in this case. However, update anomalies
may occur when traditional change propagation techniques are used as shown
in Section 3. Recall that update anomalies arise from base relation updates that
occur in-between the time change data is fully extracted and the time change
propagation is completed. During change propagation, the ETL system issues
queries towards the base relations and such updates may influence the query
results in an unexpected way and cause update anomalies.

Update anomalies can be avoided by exploiting timestamp information dur-
ing change propagation. Say, the previous incremental load was performed at
time t1 and the next incremental load is started. The ETL system first extracts
all tuples with a timestamp greater than t1. These tuples make up the change
data. The biggest timestamp seen during the extraction determines the current
time t2. When the ETL system queries the base relations, the answers may in-
clude tuples that have been updated after t2. Using timestamps, such “dirty”
tuples can easily be detected but it is not possible to find out about the state
of these tuples before t2. However, ignoring dirty tuples already avoids update
anomalies. Note that ignoring dirty tuples does not prevent any changes from
being propagated. In fact, the propagation is just postponed. All dirty tuples
carry a timestamp greater than t2 and will thus be part of the change data in
the subsequent incremental load. However, because changes may be propagated
with a delay, this approach satisfies the weak consistency property only.
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6 Conclusion

Near real-time data warehousing reduces the latency between business transac-
tion at the operational sources and their appearance at the data warehouse. It
facilitates the analysis of more recent data and thus, timelier decision making.
The advantage of near real-time data warehousing over “true” real-time solutions
is that it builds on the mature and proven ETL system and does not require a
re-implementation of the ETL transformation logic on another platform.

Care must be taken when a traditional data warehouse is refreshed in near
real-time. One consequence of shortening the loading intervals is that refreshment
may no longer happen at off-peak hours only. In fact, the operational source data
may change while incremental loading is performed. We showed that refreshment
anomalies may arise and cause the data warehouse to end up in an inconsistent
state.

We identified two ways to tackle this problem: First, the ETL system can be
prevented from seeing a change data mismatch. Second, advanced change prop-
agation approaches can be employed that work correctly in spite of a change
data mismatch. We considered both options and proposed several approaches
to avoid refreshment anomalies that can be implemented using state-of-the-art
ETL tools. For each of these approaches we discussed their impact on the opera-
tional sources, storage cost, level of consistency, and prerequisites with regard to
change data capture properties. We believe that our results are valuable for ETL
architects planning to migrate to data warehouse refreshment in near real-time.
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