Chapter 7: Batch processing and the Job Entry Subsystem (JES)
Chapter 7 objectives

Be able to:

- Give an overview of batch processing and how work is initiated and managed in the system.
- Explain how the job entry subsystem (JES) governs the flow of work through a z/OS system.
Key terms in this chapter

- batch processing
- execution
- initiator
- job
- job entry subsystem (JES)
- output
- procedure
- purge
- queue
- spool
- symbolic reference
- workload manager (WLM)
What is batch processing?

Much of the work running on z/OS consists of programs called batch jobs.

Batch processing is used for programs that can be executed:
- With minimal human interaction
- At a scheduled time or on an as-needed basis.

After a batch job is submitted to the system for execution, there is normally no further human interaction with the job until it is complete.
What is JES?

In the z/OS operating system, JES manages the input and output job queues and data.

JES handles the following aspects of batch processing for z/OS:

- Receives jobs into the operating system
- Schedules them for processing by z/OS
- Controls their output processing
What is JES? (continued)

z/OS offers two types: JES2 and JES3

Some important differences, but both JES2 and JES3:

- Accept and queue jobs submitted for *execution*
- Queue jobs for an *initiator* -- a JES program that requests the next job in the queue
- Accept *output* from a job while it is running and queue the output
- Can print the output, or save it on *spool* for an output manager to retrieve.
What is JES? (continued)

<table>
<thead>
<tr>
<th>NP</th>
<th>ID</th>
<th>Status</th>
<th>Classes</th>
<th>JobName</th>
<th>Stepname</th>
<th>ProcStep</th>
<th>JobID</th>
<th>C</th>
<th>ASID</th>
<th>ASID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>001D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>0027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>0028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>0036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>0037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>0038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>0039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>003A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>003B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>INACTIVE</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>003C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td>003D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>003E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>003F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>0041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>0042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>INACTIVE</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>0043</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

© Copyright IBM Corp., 2006. All rights reserved.
Batch flow (simplified)

1. JOBs submit to JES
2. JES initiates JCL Processing
3. JCL Processing leads to SPOOL
4. SPOOL performs Allocation, Execution, and Cleanup
5. Printer receives output
What is spooling?

Spooling is a method for queuing and holding data for input or output.

JES uses one or more disk data sets for spooling.

Input jobs and printed output from many jobs are stored in the single (conceptual) spool data set.
What an initiator does

To run multiple jobs asynchronously, z/OS uses initiators to:

- Ensure that jobs do not conflict in data set usage
- Ensure that single-user devices (tape drives) are allocated correctly
- Find executable programs requested by jobs
- Clean up after the job ends and request the next job

Preventing two users from accessing the same data at the same time is critical to z/OS and the ability to do this is one of the defining characteristics of the operating system.
Symbolic references to files

z/OS normally uses *symbolic references* to files (data sets) rather than actual file names.

The use of symbolic references provides a naming redirection between a data set-related name used in a program and the actual data set used during execution of that program.
How a symbolic file system is used

- DDNAME
- DSNAME

Program

```
OPEN FILE=XYZ
READ FILE=XYZ
...
CLOSE FILE=XYZ
```

JCL for JOB

```
//XYZ DD DSNAME=MY.PAYROLL
```

MY.PAYROLL
How a symbolic file system is used (continued)

```
program
OPEN FILE=XYZ
READ FILE=XYZ
...
CLOSE FILE=XYZ
```

```
//XYZ DD DSNAME=DIV1.PAYROLL
```

© Copyright IBM Corp., 2006. All rights reserved.
JES, job management, and JCL

Job control language (JCL) is the language used by a batch job to request resources and services from the operating system.

Through JCL, you specify:

- Who you are (important for security reasons).
- Which resources (programs, files, memory) and services are needed from the system to process your program.

The use of JCL is covered in detail in the next module.
Related actions with JCL

IT USER ACTIONS
- Determine the need and characteristics of the Job
- Create the JCL
- Submit the Job

SYSTEM ACTIONS
- JES interprets JCL and passes it to z/OS initiator
- z/OS manages each step of execution

- JES prints output
- JES collects the output and information about the Job

User views and interprets output

System Messages
Introduction to the new mainframe

Spooling

```
//DD1 DD *
...............
/
//DD2 DD SYSOUT=A
...............
```

1. JCL
2. Read from program
3. Write to SYSOUT
4. Spooling to JES
Two-step job

First step
- Master
- Program
- Tape

Second step
- Updates
- Master
- Program
- Master
- Printer
Job flow through the system

During execution, a job goes through the following phases:

- Input
- Conversion
- Processing
- Output
- Print (to hardcopy or a console display)
- Purge
Introduction to the new mainframe

Phases of job flow: input

1. JOB
2. QUEUE
3. INPUT
4. CONVERSION
5. PROCESSING
6. OUTPUT
7. HARD-COPY
8. PURGE

JCL & SYSIN

SPOOL DISK

© Copyright IBM Corp., 2006. All rights reserved.
Phases of job flow: conversion

- Job
- Conversion Queue
- Execution Queue
- Input
- Conversion
- Processing
- Output
- Hard-Copy
- Purge

JCL
SPOOL Disk

© Copyright IBM Corp., 2006. All rights reserved.
Phases of job flow: execution

1. JOB
2. INPUT
3. CONVERSION
4. EXECUTION QUEUE
5. PROCESSING
6. OUTPUT QUEUE
7. OUTPUT
8. HARD-COPY
9. PURGE

SYSIN

SPOOL DISK

SYSOUT
Phases of job flow: output and hardcopy

- JOB
- INPUT
- CONVERSION
- PROCESSING
- OUTPUT
- HARD-COPY
- PURGE
- SPOOL DISK
- SYSOUT
- NON-PRINT/PUNCH OUTPUT
- OUTPUT QUEUE
- HARD-COPY QUEUE
- PURGE QUEUE
Phases of job flow: purge

- JOB
- INPUT
- CONVERSION
- PROCESSING
- OUTPUT
- HARD-COPY
- PURGE
Job flow through the system

1. JOB
2. INPUT
3. CONVERSION
4. EXECUTION QUEUE
5. OUTPUT QUEUE
6. HARD-COPY QUEUE
7. PURGE QUEUE
8. SPOOL DISK
9. JCL & SYSIN
10. SYSIN
11. SYSOUT
12. Network job entry (NJE)
JES2 compared to JES3

In a multi-processor configuration:

JES2:
- Each JES2 processor controls its own job input, job scheduling, and job output processing.
- It is possible to configure JES2 to share spool and checkpoint data sets with other JES2 systems (multi-access spool or MAS).

JES3:
- Centralized control over processing through a single global JES3 processor, which does job selection, scheduling, and device allocation to the other JES3 systems.
- The centralized control of JES3 provides increased job scheduling control, deadline scheduling capabilities, and increased control by providing its own device allocation.

Most installations use JES2, as do the examples in this text.
What is workload manager?

Workload manager (WLM):

- The component of z/OS that manages the processing of workload in the system according to the company’s business goals, such as response time.
- Also manages the use of system resources, such as processors and storage, to accomplish these goals.
Summary

- Batch processing is a fundamental function of z/OS.
- z/OS shares with JES the management of jobs and resources.
- JES receives jobs into the system, schedules them for processing, and controls their output.
- JES manages jobs in queues.
- An initiator sets up the necessary environment for running a batch job. Multiple initiators permit the parallel execution of batch jobs.
- During the life of a job, both JES and the z/OS base control program control different phases of the overall processing.