Objectives

In this chapter you will learn to:

- Explain security and integrity concepts
- Explain RACF and its interface with the operating system
- Authorize a program
- Discuss integrity concepts
- Explain the importance of change control
- Explain the concept of risk assessment
Key terms

- authorized libraries
- authorized program facility (APF)
- encryption
- SAF
- SVC
- PASSWORD
- firewall

- hacker
- page protection bit
- Resource Access Control Facility (RACF)
- security policy
- separation of duties
- system integrity
- user ID
Introduction

- An installation’s data and programs are among its most valuable assets and must be protected.
- At one time data was secure because no one knew how to access it.
- As more people become computer literate and able to use simple tools unprotected data is becoming more accessible.
- Data security is now more important than ever including the prevention of inadvertent destruction.
Why security?

- Any system security must allow authorized users the access they need and prevent unauthorized access.
- Many companies’ critical data is now on computer and is easily stolen if not protected.
- z/OS Security Server provides a framework of services to protect data.
RACF

- RACF (part of Security Server) and the other available packages are add-on products which provide the basic security framework on a z/OS mainframe
- Identify and authenticate users
- Authorize users to access protected resources
- Log and report attempted unauthorized access
- Control means of access to resources
RACF functions overview

- Security administration
- User identification and authorization
- Audit and integrity reports violation alerts
- Resource authorization checking and system control
Identification and verification of users

- RACF uses a userid and system encrypted password to perform its user identification and verification
- The userid identified the person to the system
- The password verifies the user’s identity
- Passwords should not be trivial and exits can be used to enforce policies.
Protection Levels

RACF works on a hierarchical structure

- ALLOC allows data set creation and destruction
- CONTROL allows VSAM repro
- WRITE allows update of data
- READ allows read of data
- NONE no access

A higher permission implies all those below
Protecting a dataset

- A data set profile is created and stored in the database
- It will give users or groups an access level
- A universal access level will also be set
- The profile can be specific or generic, with or without wild cards
RACF typical display

INFORMATION FOR DATASET SYS1.*. (G)

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>OWNER</th>
<th>UNIVERSAL ACCESS</th>
<th>WARNING</th>
<th>ERASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>SYS1</td>
<td>READ</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

AUDITING

FAILURES (READ)

NOTIFY

NO USER TO BE NOTIFIED

YOUR ACCESS | **CREATION GROUP** | **DATASET TYPE**

ALTER | SYS1 | NON-VSAM
RACF access list for SYS1.*.**

<table>
<thead>
<tr>
<th>ID</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>ALTER</td>
</tr>
<tr>
<td>KARRAS</td>
<td>ALTER</td>
</tr>
<tr>
<td>WANDRER</td>
<td>ALTER</td>
</tr>
<tr>
<td>SCHUBER</td>
<td>ALTER</td>
</tr>
<tr>
<td>KURTKR</td>
<td>UPDATE</td>
</tr>
<tr>
<td>KURTKR2</td>
<td>UPDATE</td>
</tr>
<tr>
<td>KURTKR3</td>
<td>NONE</td>
</tr>
<tr>
<td>CICSRS1</td>
<td>ALTER</td>
</tr>
<tr>
<td>CICSRS2</td>
<td>ALTER</td>
</tr>
<tr>
<td>HEISIG</td>
<td>UPDATE</td>
</tr>
<tr>
<td>JUSTO</td>
<td>UPDATE</td>
</tr>
<tr>
<td>GERALD</td>
<td>READ</td>
</tr>
</tbody>
</table>
Protecting general resources

Many system resources can be protected

- DASD volumes
- Tapes
- CICS or IMS transactions
- JES spool datasets
- System commands
- Application resources and many more

RACF is flexible and more can be added
Operating system and RACF
Concepts of RACF profile checking

- **RESOURCE MANAGER**
 - RACROUTE
 - SAF CALLABLE SERVICE
 - databases
 - Yes / no

- **SECURITY PRODUCT**
 - Optional exits
 - Exit RC
 - RACF call
 - RACF Check
System Authorization Facility

- SAF is part of z/OS
- Uses RACF if it is present
- Can also use an optional exit routine
- SAF is a system service and is a common focal point for all products providing resource control.
- SAF is invoked at control points within the code of the resource manager
RACF Structure

- **Userid**
- **Group**
 - Every userid belongs to at least one group
 - Group structures are often used for access to resources
- **Resource**
- **Resource classes**
- **Class descriptor table – used to customize**
RACF structure overview

RACF ADMINISTRATION

- Resource Classes
- System Options
- Dataset and General Resource Profiles
- Group Profiles
- User Profiles
RACF Functions

- User identification and authorization
- Audit and integrity reports violation alerts
- Security administration
- Resource authorization checking and system control
- RACF database
User Identification

- RACF identifies you when you logon
- Userid and password are required
- Each RACF userid has a unique password
- Password is one way encrypted so no one else can get your password not even the administrator
- Userid is revoked after a preset number of invalid password attempts
RACF profile checking

Protected Resource? Yes

Valid user & group? Yes

Access authority? Yes

Yes granted

No

denied (*)

(*) if Protect All option is in effect
Logging and reporting

RACF maintains statistical information

RACF writes a security log when it detects:

- Unauthorized attempts to enter the system
- Access to resources
 - This depends on the settings for the resource
 - For example AUDIT(ALL(UPDATE)) will record all updates to a resource
- Issuing of commands
Security Administration

Interpret the security policy to:

- Determine which RACF functions to use
- Identify the level of RACF protection
- Identify which data to protect
- Identify administrative structures and users
RACF sysplex data sharing and RRSF

- If many systems share a RACF database there can be contention problems
- RACF will propagate commands throughout a sysplex
- RACF can use a coupling facility in a parallel sysplex to improve performance
- RRSF can be used to keep distributed RACF databases in line
Authorized programs

- Authorized tasks running authorized programs are allowed to access sensitive system functions
- Unauthorized programs may only use standard functions to avoid integrity problems
Authorized Program Facility

Authorized libraries

- SYS1.LINKLIB
- SYS1.LPALIB
- SYS1.SVCLIB

- List of installation defined libraries
Authorized Libraries

A task is authorized when the executing program has the following characteristics:

- It runs in supervisor state
- It runs in PSW key 0 to 7
- All previous programs in the same task were APF programs
- The module was loaded from an APF library
Problem Programs

- Normal programs are known as problem programs as they run in problem state (as opposed to supervisor state)
- They run in the problem key – 8
- They may or may not be in an APF library
APF Libraries

- Authorized libraries are defined by the APF list in SYS1.PARMLIB
- SYS1.LINKLIB, SYS1.SVCLIB and SYS1.LPALIB are automatically authorized
- Installation libraries are defined in PROGxx
- By default all libraries in the linklist are authorized but many installations set LNKAUTH=APFTAB, often prompted by auditors, so that this is no longer the case and only those in the list are authorized
Authorizing a program

- The first, and only the first, load module of the program must be linked with the authorization code AC=1
- It and all subsequent modules must be loaded from an authorized library
- APF libraries must be protected so that only authorized users can store programs there
Authorizing libraries

- Authorized libraries:
 - SYS1.LINKLIB
 - SYS1.LPALIB
 - SYS1.SVCLIB
 - List of installation defined libraries

- System programs usually:
 - reside in APF-authorized libraries
 - execute in supervisor state
 - use storage key 0 to through 7

- Application programs usually:
 - reside in non-authorized libraries
 - execute in problem state
 - use storage key 8

- Unauthorized libraries.
Authorizing libraries

- The APF list is built during IPL using those libraries listed in the PROGxx parmlib member
- If a dynamic list is specified then it may be updated by operator command
Introduction to the new mainframe

An example APF list

```plaintext
BROWSE SYS1.PARMLIB(PROGTT) - 01.01 Line 00000000 Col 001 080
Command ==> Scroll ==> PAGE
********************************************************************** Top of Data **********************************************************************
APF FORMAT (DYNAMIC)
APF ADD
   DSNAMES (SYS1.VTAMLIB)
   VOLUME (***)
APF ADD
   DSNAMES (SYS1.SICELINK)
   VOLUME (***)
APF ADD
   DSNAMES (SYS1.LOCAL.VTAMLIB)
   VOLUME (TOTCAT)
APF ADD
   DSNAMES (ISP.SISPLOAD)
   VOLUME (*MCAT*)
********************************************************************** Bottom of Data **********************************************************************
```

© Copyright IBM Corp., 2006. All rights reserved.
Dynamic APF

- Update a PROGxx member and then activate it with operator command: SET PROG=xx
- Use the SETPROG APF command
- DISPLAY PROG,APF command will display the current list
D PROG,APF

CSV450I 12.46.27 PROG,APF DISPLAY 027

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>VOLUME</th>
<th>DSNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z04RE1</td>
<td>SYS1.LINKLIB</td>
</tr>
<tr>
<td>2</td>
<td>Z04RE1</td>
<td>SYS1.SVCLIB</td>
</tr>
<tr>
<td>3</td>
<td>Z04RE1</td>
<td>ANF.SANFLOAD</td>
</tr>
<tr>
<td>4</td>
<td>Z04RE2</td>
<td>AOP.SAOPLOAD</td>
</tr>
<tr>
<td>5</td>
<td>Z04RE1</td>
<td>AOP.SAOPLOAD</td>
</tr>
<tr>
<td>6</td>
<td>Z04RE1</td>
<td>ARTURO.BFSLMOD</td>
</tr>
<tr>
<td>7</td>
<td>Z04RE1</td>
<td>ASMA.V1R2M0.SASMMOD1</td>
</tr>
<tr>
<td>8</td>
<td>TOTDBZ</td>
<td>ASN.V7R1M0.SASNALNK</td>
</tr>
<tr>
<td>9</td>
<td>TOTDBZ</td>
<td>ASN.V7R1M0.SASNLLNK</td>
</tr>
<tr>
<td>10</td>
<td>TOTDBZ</td>
<td>ASN.V8R1M0.SASNLOAD</td>
</tr>
<tr>
<td>11</td>
<td>TOTPT1</td>
<td>ASNA.V5R1M0.SASNALNK</td>
</tr>
<tr>
<td>12</td>
<td>TOTPT1</td>
<td>ASNL.V5R1M0.SASNLLNK</td>
</tr>
</tbody>
</table>

......
Operator Console Security

Consoles are assigned authority levels in CONSOLxx parmlib member

Commands are grouped:
- INFO informational commands
- SYS system control commands
- IO I/O commands
- CONS console control commands
- MASTER master console commands

Each console may have one or more levels
Consoles

- At least one console must have master authority
- In a sysplex consoles are shared
- It is possible to require logon to consoles using RACF
- All extended MCS consoles should require a logon
Security Roles

- Systems programmer sets up RACF
- Systems administrator implements the policies
- Security Manager sets the policies
- Separation of duties is required to prevent uncontrolled access
Summary

- z/OS Security Server
- RACF
- SAF
- Authorized Programs
- APF list
- Console security
Backup

- Node D: System D1, System D2, RACF database
- Node E: System E, RACF database
- Node C: System C, RACF database
- Node B: System B, RACF database
- Node A: System A, RACF database