
DeweyIDs—The Key to
Fine-Grained Management of XML Documents

Michael P. Haustein, Theo Härder, Christian Mathis, Markus Wagner

University of Kaiserslautern, 67653 Kaiserslautern, Germany

{haustein,haerder,mathis,m_wagner}@informatik.uni-kl.de

Abstract. Because XML documents tend to be very large and are more and more
collaboratively processed, their fine-grained storage and management is a must
for which, in turn, a flexible tree representation is mandatory. Performance re-
quirements dictate efficient query and update processing in multi-user environ-
ments. For this reason, three aspects are of particular importance: index sup-
port to directly access each internal document node if needed, navigation along
the parent, child, and sibling axes, selective and direct locking of minimal doc-
ument granules. The secret to effectively accelerate all of them are DeweyIDs.
They identify the tree nodes, avoid relabeling of them even under heavy node in-
sertions and deletions, and allow, at the same time, the derivation of all ancestor
node IDs without accessing the document. In this paper, we explore the concept
of DeweyIDs, refine the ORDPATH addressing scheme, illustrate its implemen-
tation, and give an exhaustive performance evaluation of its practical use.

1 Motivation

Because messages are data and have to be managed in the same way as database data,
XML DBMSs (XDBMSs for short) are rapidly evolving to seamlessly support XML ap-
plications which dramatically grow in number and complexity and need to process in-
creasing data volumes under tight schedules. Furthermore, collaborative applications of-
ten require concurrent read as well as write access to such XML data [17].

Although the language layers of XDBMSs typically provide declarative interfaces
such as XQuery and XPath to process XML documents, their requests have to be mapped
to procedural operators at the access and storage layers to achieve efficient and direct ac-
cess of document nodes. On the other hand, standardized XML interfaces such as DOM
[17] enable direct requests using navigational operators. Without index support, for exam-
ple frequent scans of the entire document would make response times intolerable. Hence,
directly locating internal nodes of an XML document is the key to fast query processing.
Furthermore, multi-user access needs effective and minimum-granule locking of tree
nodes. Otherwise, collaborative (and concurrent) processing would often be blocked al-
though no read/write or write/write conflicts are present. Of course, predicate locking of
XQuery statements [18]—and, in the near future, XUpdate statements—would be power-
ful and elegant, its implementation rapidly leads to severe drawbacks such as undecidabil-
ity problems and the need to acquire large lock granules for simplified predicates—a les-
son learned from the (much simpler) relational world. To provide for an acceptable solu-
tion, we necessarily have to map XQuery operations onto node accesses to accomplish

fine-granular concurrency control. Such an approach implicitly supports other interfaces
like DOM and SAX [17], because their operations correspond more or less directly to
navigational accesses.

Most influential for efficient access to and locking of the XML tree nodes is a suit-
able node labeling scheme for which several candidates have been proposed in the litera-
ture [15]. In particular, the set of labels used to identify nodes in a lock protocol must be
immutable (for the life time of the nodes), must, when inserting new nodes, preserve the
document order, and must easily reveal the level and the IDs of all ancestor nodes. We
believe that very few of the existing approaches—classified into range- and prefix-based
schemes [5, 14]—can fulfill these strong requirements. Here, we explore a scheme sup-
porting efficient insertion and compression while providing the so-called Dewey order
(defined by the Dewey Decimal Classification System) described in [3]. Conceptually
similar to the ORDPATH scheme [11], our scheme refines the mapping and solves prac-
tical problems of the implementation. Furthermore, we illustrate its use in the XDBMS
context and summarize the results of an extensive empirical evaluation.

In Section 2, we outline our storage model for XML documents, called taDOM
model, which is implemented in our XTC prototype (XML Transaction Coordinator, [8]),
introduce the labeling of nodes using DeweyIDs, and illustrate how they are used for in-
dexing, navigation, and locking. Section 3 discusses the initial allocation of DeweyIDs
and their maintenance under insertions and deletions. In Section 4, we illuminate the use
of DeweyIDs in B*-trees and their implementation details. A substantial empirical eval-
uation of DeweyID storage consumption is given in Section 5, before we summarize our
results and conclude in Section 6.

2 System Aspects of XTC

2.1 taDom Storage Model

Efficient and effective processing and concurrent operations on XML documents are
greatly facilitated, if we use a specialized internal representation which improves fine-
granular management and locking. While we use DOM trees—containing element, at-
tribute, and text nodes as defined in [17]—for the representation of XML documents on
external storage, in our XTC system we have implemented for their memory representa-
tion a slight extension, the so-called taDOM storage model illustrated in Figure 1. In con-
trast to the DOM tree, we do not directly attach attributes to their element node, but intro-
duce separate attribute roots which connect the attribute nodes to the resp. elements.
String nodes are used to store the actual content of an attribute or a text node. Via the
DOM API, this separation enables access of nodes independently of their value. Our rep-
resentational enhancement does not influence the user operations and their semantics on
the XML document, but is solely exploited for optimized lock management. To prove our
concepts, we have designed and implemented the XTC system which embodies a multi-
layered architecture and, most important to our discussion, which offers a native storage
structure for XML documents tailored to our objectives. In summary, our storage mecha-
nism provides an extensible file structure as a container of single XML documents such
that updates of an XML document (by IUD operations) can be performed on any of its
nodes; furthermore, a very high degree of storage occupancy (> 96%) is achieved [8].

2.2 Essentials of the Access Model

Fast access to and identification of all nodes of an XML document is mandatory to enable
effective indexing primarily supporting declarative queries and efficient processing of di-
rect-access methods (e. g., getElementById()) as well as navigational methods (e. g., get-
NextSibling()). Our solution is based on the concept of Dewey order. For this reason, we
have implemented the related node labeling scheme whose advantages should be illumi-
nated by referring to Figure 1, before we discuss the DeweyID mechanism in detail in Sec-
tion 3. For example, the DeweyID for price is 1.3.5 which consists of three so-called di-
visions separated by dots (in the human readable format). The root node of the document
(at level 0) is always labeled by DeweyID 1. The children obtain the DeweyID of their
parent and normally attach another division whose value increases in the ordered set of
children from left to right. To allow for later node insertions at a given level, we introduce
for the assignment of division values a parameter distance which determines the gap ini-
tially left free in the labeling space. In Figure 1, we have chosen the minimum distance
value of 2. Furthermore, assigning at a given level a distance to the first child, we always
start with distance + 1, thereby reserving division value 1 for attribute roots and string
nodes (illustrated for the attribute root of 1.3 with DeweyID 1.3.1). Hence, the mechanism
of the Dewey order is quite simple when the IDs are initially assigned, e.g., when all nodes
of the document are bulk-loaded. As a result, the lexicographic ordering of the DeweyIDs
represents the document order, i.e., the order of a left-most depth-first document traversal.

In the above tree example, the node author is inserted later within the gap between
the nodes title (d1=1.3.3) and price (d5=1.3.5) and receives DeweyID d3=1.3.4.3. Note,
so far we have only used odd values for divisions. If we would use even division values
in the same way as odd divisions, it is true that we could insert in this situation the author
node assigning 1.3.4 to it, but further insertions in this position at this level would be im-

Figure 1. A sample taDOM tree labeled with DeweyIDs

1

book

Stevens

TCP/IP...

1994

65,95

W.

T

T

T

T

1

1.3

1.3.4.3 1.3.5

1.3.5.3

1.3.3
title

1.3.3.3

1.3.3.3.1

1.3.1

1.3.1.3 1.3.1.5
year

1.3.1.3.1

id

1.3.1.5.1

1.3.4.3.3.3.1

1.3.4.3.5.3.1

author price

last first

1.3.4.3.5.3

1.3.4.3.3

1.3.5.3.1

1.3.4.3.5

1.3.4.3.3.3

1.71.5

bib

bookbook

T

element

attribute root

attribute

text node

string node

. . .

publisher

last

1.7.3

1.7.3.3

possible. Therefore, we need a kind of overflow mechanism indicating that the labeling
scheme remains at the same level when an odd division value is not available anymore for
a gap. Thus, we reserve even division values for that purpose. Hence, d1 < d3 < d5 holds
in our example thus preserving the document order among the DeweyIDs. Several even
division values may consecutively occur in a DeweyID (depending on the insertion histo-
ry); such a continuous sequence of even values just states that the same node level is kept.
Assume the element second author is inserted after author; then its node is labeled with
DeweyID d4=1.3.4.5. On the other hand, the node of a new element subtitle after title and
before author would obtain DeweyID d2=1.3.4.2.3 (explained in Section 3.2). Note, d1 <
d2 < d3 < d4 < d5 still holds. Because even values are not considered, when the level of a
node is determined, for all DeweyIDs (e.g., 1.3.4.3, 1.3.4.5, 1.3.4.2.3) built using the over-
flow mechanism we obtain level 2. Obviously, the order and ancestor relationships are
also preserved. Furthermore, the subtree insertion under node with DeweyID 1.3.4 also
reveals that overflows affect the lengths of the DeweyIDs in the entire related subtree.

The salient features of a scheme assigning a DeweyID to each tree node include
the following properties: Referring to the DeweyID of a node, we can determine the level
of the node in the tree and the DeweyID of the parent node. Hence, we can derive its entire
ancestor path up to the document root without accessing the document. By comparing the
DeweyIDs of two nodes, we can decide which node appears first in the document’s node
order. If all sibling nodes are known, we can determine the exact position of the node with-
in the document tree. It is also possible to insert new nodes at arbitrary locations without
relabeling existing nodes. In addition, we can rapidly figure out all nodes accessible via
the typical XML navigation steps (Section 2.3), if the nodes are stored in document order.
However, DeweyIDs may become quite long.

Fast (indexed) access to each
node is provided by variants of B*-trees
tailored to our requirements of node iden-
tification and direct or relative location of
any node. Figure 2a illustrates the storage
structure—consisting of document index
and document container as a set of
chained pages—sketching the sample
XML document of Figure 1, which is
stored in document order; the key-value
pairs within the document index are ref-
erencing the first DeweyID stored in each
container page. In addition to the storage
structure of the actual document, an ele-
ment index is created consisting of a
name directory with (potentially) all ele-
ment names occurring in the XML docu-
ment (Figure 2b); for each specific ele-
ment name, in turn, a node-reference in-
dex may be maintained which addresses
the corresponding elements using their DeweyIDs. In all cases, variable-length key sup-
port is mandatory; additional functionality for prefix compression of DeweyIDs is very
effective. Because of reference locality in the B*-trees while processing XML documents,

1 bib
.3 title

1.3.5 price

1

1.3.1.5.1
1.3.5

1.3 book
1.3.1 ...

1.3.1.5 id

...

1.3.4.
3.5.3.1 W.

... 1.5 book ...

Figure 2. Document storage using B*-trees

bibauthor last

............
1

1.3.4.3 1.3.4.3.3
1.7.3.3

a) Storage structure

b) Element index

1.3.1.5.1 11.3

1.3.5.3.1 ...

most of the referenced tree pages (at least the ones belonging to the upper tree layers) are
expected to reside in DB buffers—thus reducing external accesses to a minimum. As you
can see in the next section, these tree-based storage structures are building the fundamen-
tals for very efficient navigational and declarative access to XML documents.

2.3 Supporting Navigation, Declarative Queries, and Lock Management

Typical XML navigation (accessing the parent, previous or next sibling, and first or last
child of a given context node) is efficiently supported by the DeweyID addressing algo-
rithm and the B*-trees. The siblings of a context node may reside in leaf pages located
“far away” from each other. But using the document index, the pages containing the sib-
lings can be rapidly located. At best, the corresponding objects reside in the page of the
given context node cn. When accessing the previous sibling ps of cn, e.g., of node 1.5 in
Figure 2, an obvious strategy would be to locate the page of 1.5 requiring a traversal of
the document index from the root page to the leaf page where 1.5 is stored. This page is
often already present in main memory because of reference locality. Hence, we inspect
the ID d of the directly preceding node of 1.5 in document order, which is 1.3.5.3.1 in the
example. If ps exists, d must be a descendant of ps. With the level information of cn, we
can infer the ID of ps: 1.3. Now a direct access to 1.3 suffices to locate the result. This
strategy ensures independence from the document structure, i.e., the number of descen-
dants between ps and cn does not matter. We found similar search algorithms for the re-
maining four axes. The parent axis, as well as first-child and next-sibling is retrieved di-
rectly, requiring only a single document index traversal. The last-child axis works similar
to the previous-sibling axis and, therefore, needs two index traversals in the worst case.

For certain declarative queries, “set-at-a-time” processing can exploit the seman-
tic information carried by DeweyIDs which promises great advantages over the naviga-
tional “node-at-a-time” approach. For example, the XPath query //author/last on the doc-
ument in Figure 1 may be evaluated in two steps: At first, element index scans (Figure 2b)
return two lists of DeweyIDs, ListA = {1.3.4.3, ...} for all author elements, and ListL =
{1.3.4.3.3, 1.7.3.3, ...} for all last elements, respectively. Then a structural join between
these two lists is performed using as the join predicate the parent-child relationship, which
can easily be deduced from the given DeweyIDs. For example, because the DeweyID a =
1.3.4.3 from ListA is a prefix of b = 1.3.4.3.3 from ListL and the difference between the
levels of a and b is one, 1.3.4.3.3 matches the join predicate and has to be added to the
result list. For 1.7.3.3, no such match can be found, because ListA does not contain the
DeweyID 1.7.3 (which belongs to a publisher node). Such structural join algorithms rely-
ing on a range-based labeling scheme and only focussing on the parent-child and ances-
tor-descendant relationships, have been proposed recently [1, 3]. Currently, we are adjust-
ing these algorithms to the more flexible DeweyID mechanism. Because they can effec-
tively be applied in algebraic frameworks for declarative query processing, DeweyID-
based methods greatly improve selection and join operations and drastically reduce I/O.

High-performance hierarchical lock management on XML data [7] requires an ef-
ficient acquisition of locks along complete node paths starting at the context node (on
which the actual lock is requested) up to the document root. For performance reasons, ac-
cessing the stored document for acquiring a lock must be prevented in any case (e.g., ac-
cessing a single context node at level l would additionally require l document accesses to
fetch all predecessor nodes up to the document root at level 0, before they can be locked

in an adequate mode). By simply calculating each DeweyID in the ancestor path of a given
context DeweyID, lock management can be performed completely independent from the
XDBMS storage engine. As a consequence, accessing a single node also requires only a
single document access (to get the actually requested node), although a possibly large
number of predecessor nodes has to be locked for this operation.

3 Assignment of DeweyIDs

So far, we have motivated that DeweyID order and use is of paramount importance for the
efficiency and effectiveness of performance-critical processing tasks in an XDBMS.
Therefore, we want to elaborate on a suitable application of the Dewey ordering mecha-
nism to dynamic document trees and its efficient representation as objects in main mem-
ory and on external storage. For the DeweyIDs, it is essential to explore their initial as-
signment when the nodes of the XML documents are (typically bulk-) loaded. In contrast,
their behavior under (heavy) node insertions has to be considered, too.

Distance is the prime parameter of the initial DeweyID assignment (while loading
the document) which determines the numerical distance between the IDs of two sibling
nodes. It is used as a kind of reserving ID space in the labeling scheme enabling the inser-
tion of new nodes without using an overflow mechanism. The value of the distance pa-
rameter influences the ID assignment of nodes inserted during document maintenance. An
actual distance > 2 between two consecutive sibling IDs enables the allocation of a sibling
in between without the need to assign an even division. Hence, the larger the actual dis-
tance, which may be increased by sibling deletions, the more nodes can be inserted with-
out using even divisions. However, larger distance values require more bits for their rep-
resentation. On the other hand, small distance values (= 2) immediately enforce the use of
additional, even divisions during insertion and, in turn, increase the lengths of DeweyIDs.
Of course, for static documents (almost insertion-free) we should always choose the min-
imum distance size. As a consequence, we may face a design trade-off between distance
size and increased use of even divisions depending on the growth and volatility of an
XML document. Furthermore, if a maximum length for DeweyIDs is defined (inevitable
in a real implementation) and if it is exceeded due to excessive point-like insertions be-
tween two initially assigned IDs—a very rare case when reasonable parameters are
used—an expensive reassignment of DeweyIDs (relabeling of nodes) may be provoked
for the document.

3.1 Initial Document Loading

While a new document is loaded—typically bulk-loaded in document order—, the Dew-
eyIDs for its nodes are dynamically assigned guided by the following rules:

1. Element root node: It always obtains DeweyID 1.
2. Element nodes: The first node at a level receives the DeweyID of its parent node ex-

tended by a division of distance + 1. If a node N is inserted after the last node L at a
level, DeweyID of L is assigned to N where the value of the last division is increased
by distance.

3. Attribute nodes: A node N having at least one attribute, obtains (in taDOM) an at-
tribute root R for which the DeweyID of N extended by a division with value 1 is as-
signed. The attribute nodes yield the DeweyID of R extended by a division. If it is

the first attribute node of R, this division has the value 3. Otherwise, the division re-
ceives the value of the last division of the last attribute node increased by 2. In this
case, the distance value does not matter, because the attribute sequence does not af-
fect the semantics of the document. Therefore, new attributes can always be inserted
at the end of the attribute list.

4. Text nodes: A node containing text is represented in taDOM by a text node and a
string node. For text nodes, the same rules apply as for element nodes. The value of
an attribute or a text node is stored in a string node. This string node obtains the
DeweyID of the text node resp. attribute node, extended by a division with value 1.

To illustrate the effect of these
rules, we have applied them to the docu-
ment fragment of Figure 1 under the as-
sumption that all nodes are bulk-loaded.
Table 1 shows the result using a distance
value of 8; if appropriate, this value is also
used in the examples of the next section.

3.2 Insertion of New Nodes

When new nodes are inserted at arbitrary
logical positions, their DeweyIDs must
reflect the intended document order as
well as position, level, and type of node
without enforcing modifications of Dew-
eyIDs already present. For element nodes
and text nodes, the same rules apply. In
contrast, attribute roots, attribute nodes,
and string nodes do not need special con-
sideration by applying rule 3, because or-
der and level properties do not matter.

Assignment of a DeweyID for a
new last sibling is similar to the initial
loading, if the last level only consists of a
single division. Hence, when inserting el-
ement node year after price (with Dewey-
ID 1.9.25), addition of the distance value
yields 1.9.33. In case, the last level con-
sists of more than one division (indicated by even values), the first division of this level
is increased by distance-1 to obtain an odd value, i.e., the successor of 1.3.14.6.5 is 1.3.21.

If a sibling is inserted before the first existing sibling, the first division of the last
level is halved and, if necessary, ceiled to the next integer or increased by 1 to get an odd
division. This measure secures that the “before-and-after gaps” for new nodes remain
equal. Hence, inserting a type node before title would result in DeweyID 1.9.5. If the first
divisions of the last level are already 2, they have to be adopted unchanged, because
smaller division values than 2 are not possible, e.g., the predecessor of 1.9.2.2.8.9 is
1.9.2.2.5. In case the first division of the last level is 3, it will be replaced by 2.distance+1
(see Section 2.2). For example, the predecessor of 1.9.3 receives 1.9.2.9.

Table 1: DeweyID assignment using distance 8

node type rule DeweyID

bib element 1 1
book element 2 1.9

attr. root 3 1.9.1
year attribute 3 1.9.1.3
1994 string 4 1.9.1.3.1

id attribute 3 1.9.1.5
1 string 4 1.9.1.5.1

title element 2 1.9.9
text 4 1.9.9.9

TCP/IP... string 4 1.9.9.9.1
author element 2 1.9.17

last element 2 1.9.17.9
text 4 1.9.17.9.9

Stevens string 4 1.9.17.9.9.1
first element 2 1.9.17.17

text 4 1.9.17.17.9
W. string 4 1.9.17.17.9.1

price element 2 1.9.25
text 4 1.9.25.9

65.95 string 4 1.9.25.9.1
book element 2 1.17
book element 2 1.25

publisher element 2 1.25.9
last last 2 1.25.9.9

The remaining case is the insertion of node d2 between two existing nodes d1 and
d3. Hence, for d2 we must find a new DeweyID with d1 < d2 < d3. Because they are allo-
cated at the same level and have the same parent node, they only differ at the last level
(which may consist of arbitrary many even divisions and one odd division, in case a weird
insertion history took place at that position in the tree). All common divisions before the
first differing division are also equal for the new DeweyID. The first differing division de-
termines the division becoming part of DeweyID for d2. If possible, we prefer a median
division to keep the before-and-after gaps equal. Assume for example, d1 = 1.9.5.7.5 and
d3 = 1.9.5.7.16.5, for which the first differing divisions are 5 and 16. Hence, choosing the
median odd division results in d2 = 1.9.5.7.11. As another example, if d4 = 1.5.6.7.5 and
d6 = 1.5.6.7.7, only even division 6 would fit to satisfy d4 < d5 < d6. Remember, we have
to recognize the correct level. Hence, having distance value 8, d5 = 1.5.6.7.6.9. The reader
is encouraged to construct DeweyIDs for further weird cases.

Let us summarize the advantages of the introduced form of ID assignment:
• Existing DeweyIDs allow the assignment of new IDs without the need to reorganize

the IDs of nodes present. A relabeling after weird insertion histories1 is only required,
when implementation restrictions are violated, e.g., the max. key length in B*-trees.

• The DeweyID of the parent node can be determined in a very simple way; this is fre-
quently needed, because a jump into the tree requires locking the entire ancestor path.

• Comparison of two DeweyIDs allows ordering of the resp. nodes in document order.
• Checking whether node d1 is an ancestor of d2 only requires to check whether Dew-

eyID of d1 is a prefix of DeweyID of d2.
• High distance values reduce the probability of overflows. They have to be balanced

against increased storage space for the representation of DeweyIDs. Nevertheless,
DeweyIDs may become quite long, especially in trees with large max. depth values.

4 Implementation of DeweyIDs

Due to the large variance of XML documents in number of levels and, even more, number
of elements per level, we cannot design a (big enough) fixed-length storage scheme of
DeweyIDs; such a scheme would mean fixed for individual divisions and fixed for the
number of maximum allowed repetitions per level. Even if the first sibling at a level has
division value distance, the bulk-loaded millionth sibling would have a value of 106*dis-
tance (e.g., requiring the representation of ~8*106 as an individual division value using
the example in Table 1). On the other hand, we have more smaller division values—as-
signed to the “first” children of a node—than larger ones constructed for children inserted
later. Of course, there are definitely more “first” children. Therefore, we urgently need
adaptivity for our storage scheme.

For the sake of space economy and flexibility, the storage scheme must be dynam-
ic, variable, and effective in each aspect and, at the same time, it must be very efficient in
storage usage, encoding/decoding, and value comparison. The critical question is how can
we provide for such a scheme?

1 For example, point insertions of thousands of nodes between two existing nodes may produce large DeweyIDs.
Especially insertions before the currently inserted node may enforce increased use of even division values thereby
extending the total length of a DeweyID.

4.1 Encoding Divisions

A division value O needs a variable-length representation which could be achieved in the
simplest case by attaching a fixed-length field Lf representing the actual length of O.
However, what is an adequate length value lf for Lf? Because

Lf < , each division value is limited by O < .

Most division values are expected to be rather small (<100), but some of them could reach
>4*109. While for the former example value Lf = 7 and lf = 3 would be sufficient, the latter
would require Lf > 32 and lf > 6. Furthermore, whatever reasonable value for lf is chosen,
it is not space optimal and additionally introduces an implementation restriction.

Hence, we should make the length indicator itself of variable length. A straight-
forward approach is to spend a fixed-length field LLf of length llf to describe the actual
length of Lv resulting in an entry LLf|Lv|O. A length llf of LLf allows the representation
of a length value in Lv

llv < limiting the length of divisions O to LO < . and their values to .

While llf = 2 restricts values of O < 216 and is not big enough for the general case, llf = 3
(allowing values of O < 2256) definitely is for all practical applications. However, such a
scheme carries the penalty for the frequent divisions with small values. Other approaches
considered include Golomb codes and exponential Golomb codes [16] to allow for space-
saving representations of O, but with similar disadvantages.

Another encoding approach [19] is using a k-based representation where the
length of the encoding unit is determined by m = log2 (k + 1). The idea is to reserve one
m-bit code to represent the separator “.”, while a sequence of m-bit codes is interpreted as
a number with base k. An appropriate value is k = 3 delivering the following codes: 00:
“0”, 01: “1”, 10: “2”, 11: “.”. Hence, 1.7.11 is encoded by 01 11 10 01 11 01 00 10 which
reads 1*30 . 2*31+1*30 . 1*32+0*31+2*30. Other codes with base k are possible. While k
= 1 delivers a “funny” and very inefficient encoding, k = 7 may be appropriate for specific
value distributions. [19] claims that k = 3 is superior to other Dewey encodings.

We hope to beat this encoding by Huffman
codes which can be adjusted to the value distribu-
tions of the divisions used for DeweyIDs. Therefore,
they offer an extra degree of freedom for optimiza-
tion. We have designed an overall template for a DeweyID as illustrated in Figure 3. TL
of fixed length contains the total length in bytes of the actual DeweyID, belongs to the
externally stored DeweyID format, and is kept in a respective entry of the B*-tree man-
aging the collection of DeweyIDs on external storage. Each division consists of a Ci/Oi
pair where, based on a code table, Ci allows to determine the length of Oi and Oi the actual
value of the division.

4.2 Use of Huffman Codes

We use the idea of Huffman trees to determine codes standing for variable lengths for the
Ci (without explicit length information). As a prerequisite, the set of Ci values must be
prefix free. A given encoded DeweyID is decoded as follows: As soon as a code given in
Table 2 is matched while scanning the field C0, the associated length information is used
(assume code 101 in row 3) to extract the O0 value contained in the subsequent 6 bits. En-

2
lf 22

lf

2
l lf 22

llf

2
LO

Figure 3. DeweyID template

TL C0 O0 C1 O1 Ck Ok. . .

coding is performed in such a way that 000000 is assigned to the first value 24 and 111111
to the last value 87 of the related range. Therefore, if we have extracted 001010, we can
decode it to value 34. Then we scan field C1 and so on, until Ok is reached. Because the
actual k is not explicitly stored, TL helps to determine the proper end of the DeweyID.
Encoding is accomplished the other way around. Assume the encoding of a division Oi
with value 13. Hence, the second row in Table 2 delivers code 100 and Ci = 4. Because
13 is the sixth value of range 8-23, we yield an encoding of 0101, which is composed to
the Ci/Oi encoding of 1000101.

The codes of Table 2 are only an
example used for our experiments. They
can be constructed using a Huffman tree
thereby adjusting the code lengths to the
anticipated Oi length distributions. For
this reason, we can achieve the optimal
assignment of code lengths / Oi length
distributions, if the latter are known in
advance or are collected in an analyzing
run or a by a representative sample be-
fore bulk-loading of XML documents.
By default, we expect the larger numbers
of divisions in the smaller value ranges of Oi and use this heuristics for the Huffman codes
and length assignments.

Because DeweyIDs are stored in byte-structured sequences in B*-trees, storing a
bit-encoded DeweyID in a byte structure may need a padding of bits for alignment rea-
sons. By using Table 2, DeweyID 1.13.27, for example, results in the bit sequence
00011000.10110100.0011 where we have inserted dots to indicate byte boundaries for im-
proved clarity. Because the last byte is incomplete, it is padded by zeros2. Consequently,
the TL value is 3 and the stored DeweyID is 00011000.10110100.00110000.

5 Empirical Evaluation

To evaluate the performance of the DeweyID concept and especially that of our imple-
mentation, we have explored a variety of XML documents [10] as listed in Table 3. They
represent a wide spectrum of different structural properties which were checked w.r.t.
space consumption.

5.1 Consumption of Storage Space

In all cases, the DeweyIDs were assigned during bulk-loading where the distance value
was systematically varied from the minimum of 2 (where almost no inserts are expected)
to 256. The growth of the distance value reflects the probability that the nodes of the entire
document are inserted randomly in a step-by-step manner and that even divisions (which
represent a kind of overflow handling) should be avoided as far as possible.

Obviously, the number of divisions together with the chosen distance value exert
the largest influence on the DeweyID length. Strongly depending on these factors, the

2 Because value 000 is not used, padded zeros can be distinguished from encoded values.

Table 2. Assigning codes to Li fields

code Ci Li value range of Oi

0 3 1-7
100 4 8-23
101 6 24-87
1100 8 88-343
1101 12 344-4439
11100 16 4440-69975
11101 20 69976-1118551
11110 24 1118552-17895767
11111 31 17895768-2165379414

most expressive indicator for the quality of DeweyID encoding is the number of bytes per
DeweyID needed in the average (∅−size). This again is essentially determined by the doc-
ument’s average depth and fanout (∅-depth, ∅-fanout). Having this interrelationship in
mind, we have collected the most influential document properties summarized in Table 3.

The ∅−size of Dew-
eyIDs as a function of the dis-
tance parameter is shown in
Figure 4. To facilitate inter-
pretation, we have coarsely
classified our document col-
lection in Table 4 according
to the factors ∅-depth and ∅-
fanout into classifiers (low, medium, high). Some classes are either of little practical value
(low/low) or will not occur in real applications (high/high). For the classes (high/medium)
and (low/medium), we did not have representatives, but we can infer on their behavior. Of
course, all graphs exhibit the same principal characteristics with strong storage space
growth depending on increasing distance values where, however, the ∅-size of DeweyIDs
is strongly correlated to the ∅-depth. Although computed for all 10 files, we focus for rea-
sons of space limitations and clarity on 5 graphs in Figure 4 (marked bold in Table 4).
Their comparison clearly reveals the strong dependency of ∅-size on ∅−depth of a doc-
ument. Documents with lower ∅−depth (files 3, 5, and 8) are the clear “winners” in terms
of short IDs, whereas the files 2, 4, 6, and 10 form the middle group. ∅−depth of 8.97 is
the decisive factor making the IDs of file 1 the “losers” in terms of space consumption.
File 9 (medium/high), but almost classified as low depth, is closer to the (low/*) group,
whereas file 7 as the representative of (medium/low) is closer to the middle group.

Table 3. taDOM characteristics of the XML documents considered

file name description size
(bytes)

number
of element

nodes

number
of

attributes

max.
depth

∅−
depth

max.
fanout

∅−fan-
out of
elems

1)
treebank_e.x

ml

Encoded DB of
English records of
Wall Street Journal

86082517 2437666 1 38 8.97 56385 2.33

2)
psd7003.xml

DB of protein
sequences 716853016 21305818 1290647 9 6.2 262527 3.99

3)
customer.xml

Customers from
TPC-H benchmark 515660 13501 1 5 3.92 1501 8.99

4)
ebay.xml

Ebay
auction data 35562 156 0 7 4.76 12 5.0

5)
lineitem.xml

Line items from
TPC-H benchmark 32295475 1022976 1 5 3.96 60176 17.0

6) mondial-
3.0.xml

Geographical DB
of diverse sources 1784825 22423 47423 8 5.25 955 4.43

7)
nasa.xml

Astronomical
data 25050288 476646 56317 10 6.62 2435 2.79

8)
orders.xml

Orders from TPC-H
Benchmark 5378845 150001 1 5 3.93 15001 10.0

9)
SwissProt.xml

DB of protein
sequences 114820211 2977031 2189859 7 4.9 50000 6.75

10)
uwm.xml

Courses of a
University Website 2337522 66729 6 7 4.83 2112 4.21

Table 4. Document classification

∅−fanout f > 6 f > 3 f ≤ 3

∅−depth high medium low

d > 8 high ? ? 1
d > 4.5 medium 9 2, 4, 6, 10 7
d ≤ 4.5 low 3, 5, 8 ? ?

A first space optimization is already included in the ∅-size values of Figure 4. Be-
cause all DeweyIDs start with “1.”, we don’t store this first division on disk and save 4
bits per DeweyID. To estimate the portion of ∅-size due to the distance parameter, we re-
fer to a practical design space reasonably restricted by distance = 32 in Figure 4. In Figure
5, the average fraction of the ∅-size caused by the distance parameter (distance ≤ 32) on
∅-size is illustrated for all 10 sample files. Note, these ∅-size values are comparable to
those anticipated for TID encodings in relational DBMSs. The interesting measures to es-
timate this distance influence are ∅-size@dist(x) and DistanceInfluence per file which
we have defined as DI(file) = (∅-size@dist(32) – ∅-size@dist(2))/∅-size@dist(2). Ap-
plied to files 1, 2, and 8 (the main classification axis), we yield DI(1) = 0.73, DI(2) = 0.49,
and DI(8) = 0.39. DI(1) corresponds to the (high/low) case, where the average DeweyID
is composed of more divisions, but smaller division values per level. Therefore, larger dis-

Figure 4. ∅−size of DeweyIDs grouped by the document’s ∅−depth

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 32 64 96 128 160 192 224 256

av
g.

 n
um

be
r o

f b
yt

es
 p

er
 D

ew
ey

ID

distance

1. treebank_e.xml

G

GG

GG

GGGGGG

GGG

GGGGGGG

GGGGGGGGGGGGGGGGGGGGGG

GGGGGGGGGGGGGG

GGGGGGGGGGGGGGGGGGGGGGGGGGGG

GGG

G
2. psd7003.xml

;
;

;

;;
;;;;;

;
;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;
;

;;
;;;

;
7. nasa.xml

n

n
n

n
n
nnnnnn

nnn
nnnnnnn

nnnnnnnnnnnnnnnnnnnnnn

nn

nnn

n
9. SwissProt.xml

5

5
5
55

55
5555

555
55555555555555555555555555555

555

5
3. customer.xml

s

s
s
ssssssss

ssssssssssssssssssssssssssssssss
sss

s

Figure 5. Influence of the distance parameter

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

uw
m

.xm
l

Sw
issProt.xm

l

orders.xm
l

nasa.xm
l

m
ondial-3.0

lineitem
.xm

l

ebay.xm
l

custom
er.xm

l

psd7003.xm
l

treebank_e.xm
l

av
g.

 n
um

be
r o

f b
yt

es
 p

er
 D

ew
ey

ID

distance 32

G

G

G G

G G

G

G

G

G

G
distance 16

;

;

;
;

; ;

;

;

;

;

;
distance 8

n

n

n
n

n
n

n

n

n

n

n
distance 4

5

5

5

5

5 5

5

5

5

5

5
distance 2

s

s

s

s

s s

s

s

s

s

s

tance values have stronger influence on ∅-size (higher DI). In contrast, DI(8) character-
izes the (low/high) class with fewer division values per average DeweyID using higher
division values. Because—relative to smaller division values—the representation of high-
er division values is more economical, DistanceInfluence is less distinctive (smaller DI).
The (medium/medium) class is somewhere in the middle. Note, however, this influence
is superposed in all cases by the document’s attributes and their different labeling scheme.

XML documents converted from relational tables fall into the (low/high) class,
i.e., their DeweyID size is less sensitive to the selection of larger distance values. In con-
trast, the deeper the XML documents are, the more critical is the appropriate selection of
distance d. If documents are bulk-loaded and experience less modifications, d = 2 is the
right choice. However, frequent updates need some serious considerations to reduce the
danger of “gap overflows” while limiting space consumption. An overflow lengthens the
DeweyIDs in the entire subtree and, if several of them in the same “tree area” accumulate
even division values in some DeweyID, the first one violating the implementation restric-
tions on key length provokes a reorganization run (limited to a particular subtree would
ease this situation). Thus, optimal assignment of the DeweyID parameters is complex and
could be greatly supported by a physical structure advisor which could use our findings.

5.2 Frequency of Reorganizations

Reassignment of DeweyIDs (node relabeling) becomes necessary when the byte represen-
tation of any DeweyID exceeds a defined length, for example, the maximally allowed key
length of the B*-tree implementation. Large distance values are the prime measure to
avoid such undesirable events to the extent possible. To determine how many nodes can
at least be inserted at the first level, before such an undesired event occurs, we construct
a worst-case scenario which provokes a DeweyID to grow as fast as possible. When the
boundary of the mechanism—defined as the difference of the actual DeweyID length after
initial loading to the implementation-dependent key-length restriction—is pushed, a reor-
ganization of the label assignment is needed to make room for further insertions. We start
with the minimal scenario such that the hypothetical maximal DeweyID sizes (see Figure
6) can be considered as the threshold values to be passed.

The test scenario consists of the root 1 and a child with DeweyID 1.distance+1;
for all cases considered, their space consumption including padding is 2 bytes. The inser-
tion of the sibling always takes place before the last inserted one. Hence, using distance
value 16 and “halving the gap” as an example, the sequence of assigned DeweyIDs is

Figure 6. Provoking DeweyID reorganizations: worst-case node insertions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

nu
m

be
r o

f i
ns

er
te

d
no

de
s

distance

hypothetical implementation restrictions on DeweyID size:

64 bytes

128 bytes

96 bytes

1.17, 1.9, 1.5, 1.3, 1.2.17, 1.2.9, 1.2.5, 1.2.3, 1.2.2.17, ... Therefore, the insertion history
resembles the backward-oriented storage of documents. As illustrated in Figure 6, our la-
beling mechanism is quite stable. For example, using a distance value of 32 and having
thresholds of ~(64-2) or ~(128-2) bytes, we can stress-insert >500 resp. >1000 nodes, be-
fore relabeling of at least a subtree has to be achieved.

When considering hypothetical implementation restrictions, we have to observe
the maximum length (max-size) of a DeweyID occurring in a document which is, of
course, strongly dependent on the max depth values (longest paths). In file 1 with max.
depth = 38, we obtain ∅-size@dist(2) = 6.67 and ∅-size@dist(32) = 11.57 bytes, whereas
the corresponding max-sizes are 22 and 46 bytes. Hence, reorganization frequency de-
pends on the document’s max-size, the distance parameter used in the DeweyIDs, and the
location of (weird) insertions in the document. In summary, although some care has to be
exercised, DeweyIDs are not challenged concerning their practical usability.

6 Conclusions and Outlook

In this paper, we have discussed the need for fast node identification when managing
XML documents in databases. For dominant processing tasks such as declarative, index-
based query evaluation, tree navigation, and concurrency control, fine-grained access to
the documents is indispensable. Thus, efficient and effective node labeling resilient to ar-
bitrary document modifications is of outmost importance. In this way, we have discovered
how the Dewey order can be exploited for dynamic XML documents and have tailored
the DeweyID mechanism in the lines of [11] to our proven taDOM storage model. An ex-
tensive empirical evaluation has explored the solution space for the critical design para-
meters and has pinpointed its practical usability even under weird application conditions.

So far, fine-grained management of XML documents and its effects on all query
processing aspects are hardly discussed in the database literature. This is partly, because
some existing systems use relatively coarse storage units [6, 12], and partly, because (al-
most all) XDBMS focus on query processing and neglect concurrency control at all [9].
In this sense, by elaborating on the DeweyID mechanism we have just found the key to
fine-grained management of XML documents in databases. It is obvious that the deeper
the document tree, the larger the DeweyID space consumption. But this may be compen-
sated by processing advantages, because such keys carry the structure information of larg-
er paths. As a consequence, the savings for concurrency control and index use correspond
to these path lengths.

We strongly believe that the concept of DeweyIDs is tailored to the dichotomy of
fast main memory and rather slow external storage devices (according to [3], disks are se-
quential devices) keeping the voluminous XML data. It enables a large share of XML pro-
cessing in memory, because the DeweyIDs represent large portions of structure and con-
tent information supporting critical paths of query processing and concurrency control
(e.g., lock acquisition for ancestors) in main memory and reducing external data access to
a minimum. In this respect, it resembles—however, much more complex and effective—
the proceeding in flat relational databases where TID lists stored in B*-tree indexes are
used in Boolean set operations (∩, ∪, –) to reduce the records to be fetched for query eval-
uation from external devices to an absolute minimum. On the other hand, the precise de-
rivation of the ancestor path without disk access greatly improves locking costs.

There are many other issues that wait to be resolved: For example, we did not say
much about the usefulness of optimization features offered. In the XDBMS access layer
we currently evaluate the storage of DeweyIDs using prefix compression within the data
pages. This physical optimization technique accomplishes an improved utilization of data
pages (reducing storage space for documents) and diminishes the probability of XML
fragment reorganizations. System-driven self-optimization from a more logical point of
view (in contrast to the physical optimization) can be achieved by an analysis run before
the actual bulk-loading of the documents. In this analysis phase, the expected average size
of DeweyIDs, average document depth and fanout can be discovered and, in turn, used to
automatically adjust the distance parameter for assigning new DeweyIDs. This adjust-
ment could optionally accept user hints, e.g., the modification frequency for each docu-
ment. Because of such application-specific DeweyID maintenance, we hope to gain opti-
mal physical management of XML documents in our XDBMS.

References
1. S. Al-Khalifa et al.: Structural Joins: A Primitive for Efficient XML Query Pattern

Matching. Proc. ICDE: 141 (2002)
2. T. Barclay, W. Chong, J. Gray: A Quick Look at SATA Disk Performance CoRR

cs.DB/0403021: (2004)
3. N. Bruno, N. Koudas, D. Srivastava: Holistic Twig Joins: Optimal XML Pattern

Matching. Proc. SIGMOD Conf.: 310-321 (2002)
4. M. Dewey: Dewey Decimal Classification System. http://www.mtsu.edu/~vvesper/

dewey.html
5. E. Cohen, H. Kaplan, T. Milo: Labeling Dynamic XML Trees. PODS 2002: 271-281
6. T. Fiebig et al.: Natix: A Technology Overview. A. Chaudri et al. (eds.). LNCS 2593,

Springer, 12-33 (2003)
7. M. Haustein, T. Härder: Optimizing Concurrent XML Processing, submitted (2005)
8. M. Haustein, T. Härder: Fine-Grained Management of Natively Stored XML Docu-

ments, submitted (2005), http://wwwdvs.informatik.uni-kl.de/pubs/p2005.html
9. H. V. Jagadish, S. Al-Khalifa, A. Chapman: TIMBER: A native XML database. The

VLDB Journal 11(4): 274-291 (2002)
10. G. Miklau: XML Data Repository, http://www.cs.washington.edu/research/xml-

datasets
11. P. E. O'Neil et al.: ORDPATHs: Insert-Friendly XML Node Labels. Proc. SIGMOD

Conf.: 903-908 (2004)
12. H. Schöning: Tamino—A DBMS designed for XML. Proc. ICDE: 149-154 (2001)
13. A. Schmidt, F. Waas, M. Kersten: XMark: A Benchmark for XML Data Manage-

ment. Proc. VLDB Conf.: 974-985 (2002)
14. A. Silberstein, H. He, K. Yi, J. Yang: BOXes: Efficient Maintenance of Order-Based

Labeling for Dynamic XML Data. ICDE 2005: 285-296
15. I. Tatarinov et al.: Storing and Querying Ordered XML Using a Relational Database

System. Proc. SIGMOD Conf.: 204-215 (2002)
16. J. Teuhola: A Compression Method for Clustered Bit Vectors. Information Process-

ing Letters 7(6): 308-311 (1978)
17. W3C Recommendations. http://www.w3c.org (2004)
18. XQuery 1.0: An XML Query Language. W3C Working Draft (Oct. 2004)
19. J. X. Yu, D. Luo, X. Meng, H. Lu: Dynamically Updating XML Data: Numbering

Scheme Revisited, World Wide Web: Internet and Web Inf. Systems, 8, 5-26, 2005

