
Hash-Based Structural Join Algorithms

Christian Mathis and Theo Härder

University of Kaiserslautern⋆⋆

Abstract. Algorithms for processing Structural Joins embody essential build-
ing blocks for XML query evaluation. Their design is a difficult task, because
they have to satisfy many requirements, e. g., guarantee linear worst-case run-
time; generate sorted, duplicate-free output; adapt to fiercely varying input sizes
and element distributions; enable pipelining; and (probably) more. Therefore, it
is not possible to designthe structural join algorithm. Rather, the provision of
different specialized operators, from which the query optimizer can choose, is
beneficial for query efficiency. We propose new hash-based structural joins that
can process unordered input sequences possibly containingduplicates. We also
show that these algorithms can substantially reduce the number of sort operations
on intermediate results for (complex) tree structured queries (twigs).

1 Introduction

Because XML data is based on a tree-structured data model, itis natural to use path
and tree patterns for the search of structurally related XMLelements. Therefore, ex-
pressions specifying those patterns are a common and frequently used idiom in many
XML query languages and their effective evaluation is of utmost importance for every
XML query processor. A particular path pattern—thetwig—has gained much attention
in recent publications, because it represents a small but frequently used class of queries,
for which effective evaluation algorithms have been found [1, 3, 7, 11, 14, 16].

Basically, a twig, as depicted in Fig. 1, isa) Queries

b) Twig for Q1 and Q2

1 2

3 4

5

6

for $b in //book, $a in
where $b//title="XML" and
return

Q2) $b//author

($a, $a/name)
$a//city="Rome"

Q1) //book[title="XML"]//author[.//city="Rome"]/name

title

book

author

city name"XML"

"Rome"

Fig. 1.Sample Query and Twig

a small tree, whose nodesn represent sim-
ple predicatespn on the content (text) or the
structure (elements) of an XML document,
whereas its edges define the relationship be-
tween the items to match. In the graphical no-
tation, we use the double line for the descen-
dant and the single line for the child relation-
ship. For twig query matching, the query pro-
cessor has to find all possible embeddings of
the given twig in the queried document, such
that each node corresponds to an XML item and the defined relationship among the
matched items is fulfilled. The result of a twig is represented as an ordered1 sequence

⋆⋆ Database and Information Systems, D-67653 Kaiserslautern, Germany.
{mathis|haerder}@informatik.uni-kl.de

1 Here, “ordered” means: sorted in document order from the root to the leaf items.

2 C. Mathis, T. Härder

of tuples, where the fields of each tuple correspond to matched items. Usually, not all
nodes of a twig generate output, but are mere (path) predicates. Therefore, we use the
termextraction point[7] to denote twig nodes that do generate output (the boxed nodes
in Fig. 1).

1.1 Related Work

For twig query matching, a large class of effective methods builds on two basic ideas:
the structural join [1] and theholistic twig join [3]. The first approach decomposes
the twig into a set of binary join operations, each applied toneighbor nodes of the
twig (for an example, see Fig. 2). The result of a single join operation is a sequence
of tuplesSout whose degree (number of fields) is equal to the sum of the degrees of
its input tuples from sequencesSinA andSinB. Sout may serve as an input sequence for
further join operations. In the following, we denote the tuple fields that correspond to
the twig nodes to join as thejoin fields. The underlying structural join algorithms are
interchangeable and subject to current research (see the discussion below).

In [3], the authors argue that, intrinsic for the structuraljoin approach, intermediate
result sizes may get very large, even if the final result is small, because the intermediate
result has to be unnested. In the worst case, the size of an intermediate result sequence is
in the order of the product of the sizes of the input sequences. To remedy this drawback,
twig join algorithms [3, 7] evaluate the twig as a whole, avoiding intermediate result
unnesting by encoding the qualifying elements on a set of stacks.

Of course, holistic twig join algorithms are good candidates for physical opera-
tors supporting query evaluation in XDBMSs. However, they only provide for a small
fraction of the functionality required by complete XPath and XQuery processors (e. g.,
no processing of axes other thanchild anddescendant; no processing of order-based
queries). Therefore, the development of new structural join algorithms is still valuable,
because they can act as complemental operators in case the restricted functionality of
twig joins is too small, or as alternatives if they promise faster query evaluation.

Existing structural join approaches can roughly be dividedinto four classes by the
requirements they pose on their input sequences: A)no requirements[8, 11, 14]; B)in-
dexed input[16], C)sorted input[1, 10, 16]; D)indexed and sorted input[4]. Especially
for classes C and D, efficient algorithms have been found thatgenerate results in lin-
ear time depending on the size of their input lists. In contrast, for class A, there is—to
the best of our knowledge—no such algorithm. All proposed approaches either sort at
least one input sequence [11], or create an in-memory data structure (a heap) requiring
O(nlog2n) processing steps [14]. By utilizing hash tables that can be built and probed
in (nearly) linear time, the algorithms we introduce in thispaper can remedy this prob-
lem. Note, the strategies in [11, 14] elaborate on partition-based processing schemes,
i. e., they assume a small amount of main memory and large input sequences, requiring
their partition-wise processing. Their core join algorithm, however, is main-memory–
based, as ours is. Therefore, our new join operators can be—at least theoretically2—
combined with the partitioning schemes proposed in these earlier works. Answering

2 [14] uses a perfect binary tree (PBiTree) to generate XML identifiers. In real-world scenarios,
we assume document modifications that can hardly be handled with PBiTrees. Therefore, we

Hash-Based Structural Join Algorithms 3

twig (and more complex queries) using binary structural join algorithms imposes three
non-trivial problems: selecting the best (cheapest) join order (P1) to produce a sorted
(P2) and duplicate-free (P3) output. P1 is tackled in [15], where a dynamic program-
ming framework is presented that produces query executionsplans (QEPs) based on
cost estimations. The authors assume class C (and D) algorithms, which means that
even intermediate results are required to be in document order on the two join fields.
As a consequence, sort operators have to be embedded into a plan to fulfill this re-
quirement. Consider for example the twig in Fig. 1. Let the circled numbers denote
the join order selected by an algorithm from [15]. Then, three sort operators have to
be embedded into the QEP (see3 Fig. 2). Sort operators are expensive and should be
avoided whenever possible. With structural join algorithms not relying on a special in-
put order—like those presented in this paper—we can simply omit the sort operators in
this plan. However, a final sort may still be necessary in somecases.

Problem P3 was studied in [8]. The authors

b:book t:title

x:“XML”

a:author

r:“Rome”

c:city

n:name

sorttitle

sortauthor

sortauthor

b/t

b//a

t/x

a/c

c/r

a/n

Fig. 2.Sample Plan

show that duplicate removal is also important for
intermediate results, because otherwise, the com-
plexity of query evaluation depending on the num-
ber of joins for a query Q can lead to an expo-
nential worst-case runtime behavior. Therefore,
for query evaluation using binary structural joins,
tuplewise duplicate-free intermediate result
sequences have to be assured after each join exe-
cution. Note, due to result unnesting, even a (sin-
gle) field in the tuple may contain duplicates. This
circumstance is unavoidable and, thus, we have to cope with it. Because duplicate
removal—like the sort operator—is an expensive operation,it should be minimized.
For example in [6], the authors present an automaton that rewrites a QEP for Q, thereby
removing unnecessary sort and duplicate removal operations. Their strategy is based on
plans generated by normalization of XPath expressions, resulting in the XPath core lan-
guage expressions. However, this approach does not take join reordering into account,
as we do. Our solution to P3 is a class of algorithms that do notproduce any duplicates
if their input is duplicate free.

1.2 Contribution

We explore the use of hash-based joins for path processing steps of XML queries and
identify the selectivity ranges when they are beneficial. Inparticular, we propose a
class of hash-based binary structural join operators for the axesparent, child, ances-
tor, descendant, preceding-sibling, andfollowing-siblingthat process unordered input
sequences and produce (unordered) duplicate-free output sequences. Furthermore, we
show by extensive tests using the XTC (XML Transaction Coordinator)—our proto-
type of a native XDBMS—that our approach leads to a better runtime performance
than sort-based schemes.

The remainder of this paper is organized as follows: Sect. 2 briefly describes some
important internals of XTC, namely our node labeling schemeand an access method for

used SPLIDs (Sect. 2.1) instead. As a consequence, this “gap” had to be bridged to support the
proposed partition schemes with our ideas.

3 An arrow declares the input node of a join by which the output is ordered, where important.
Possible areroot to leaf, e. g., between “book” and “title”, andleaf to root, e. g., the final join.

4 C. Mathis, T. Härder

element sequences. Sect. 3 introduces new hash-based algorithms. In Sect. 4 we present
our quantitative results before we conclude in Sect. 5.

2 System Testbed

XTC adheres to the well-known layered hierarchical architecture: The concepts of
the storage system and buffer management could be adopted from existing relational
DBMSs. The access system, however, required new concepts for document storage, in-
dexing, and modification including locking. The data systemavailable only in a slim
version is of minor importance for our considerations.

2.1 Path Labels

Our comparison and evaluation of node labeling schemes in [9] recommends node la-
beling schemes which are based on the Dewey Decimal Classification [5]. The abstract
properties of Dewey order encoding—each label represents the path from the docu-
ments root to the node and the local order w. r. t. the parent node; in addition, sparse
numbering facilitates node insertions and deletions—are described in [13]. Refining
this idea, similar labeling schemes were proposed which differ in some aspects such as
overflow technique for dynamically inserted nodes, attribute node labeling, or encoding
mechanism. Examples of these schemes are ORDPATH [12], DeweyID [9], or DLN
[2]. Because all of them are adequate and equivalent for our processing tasks, we prefer
to use the substitutional namestable path labeling identifiers(SPLIDs) for them.

Here we only summarize the benefits of the SPLID concept whichprovides holistic
system support. Existing SPLIDs are immutable, that is, they allow the assignment
of new IDs without the need to reorganize the IDs of nodes present. Comparison of
two SPLIDs allows ordering of the respective nodes in document order, as well as the
decision of all XPath axis relations. As opposed to competing schemes, SPLIDs easily
provide the IDs of all ancestors to enable direct parent/ancestor identification or access.
This property is very helpful for navigation and for fine-grained lock management in
the XML documents. Finally, the representation of SPLIDs, e. g., label 1.3.7 for a node
at level 3 and also used as an index reference to this node, facilitates the application of
hashing in our join algorithms.

2.2 Accessing Ordered Element Sequences

A B*-tree is used as a document store

1.31.3.5 1.3.7

node−reference
indices
(B*−trees)

book
author title

name directory
(B−tree)

each sorted in document order

Fig. 3.Element Index

where the SPLIDs in inner B*-tree nodes
serve as fingerposts to the leaf pages. The
set of doubly chained leaf pages forms
the so-called document container where
the XML tree nodes are stored using the
format (SPLID, data) in document order.
Important for our discussion, the XDBMS

Hash-Based Structural Join Algorithms 5

creates anelement indexfor each XML document. This index consists of aname direc-
tory with (potentially) all element names occurring in the XML document (Fig. 3). For
each specific element name, in turn, anode-reference indexis maintained which ad-
dresses the corresponding elements using their SPLIDs. Note, for the document store
and the element index, prefix compression of SPLID keys is very effective because both
are organized in document order directly reflected by the SPLIDs [9].

The leaf nodes in our QEPs are either element names or values.By accessing the
corresponding node reference indexes, we obtain for them ordered lists of SPLIDs and,
if required lists of nodes in document order by accessing thedocument store.

3 Hash-Based Structural Join Algorithms

To be able to compete with existing structural join al-

x:“XML”t:title

b:book

a:author

c:city

r:“Rome”

n:name

t/x

b/t

b/a

a//c

c/r
a/n

Fig. 4.Plan for Query 1

gorithms, we had to design our new algorithms with
special care. In particular, the use of semi-joins has
several important benefits. The processing algorithms
become simpler and the intermediate result size is re-
duced (because the absolute byte size is smaller and
we avoid unnesting). Several important design objec-
tives can be pointed out:

Design single-pass algorithms. As in almost all
other structural join proposals, we have to avoid multiple scans over input sequences.

Exploit extraction points. With knowledge about extraction points, the query opti-
mizer can pick semi-join algorithms instead of full joins for the generation of a QEP.
For example, consider the plan in Fig. 4 which embodies one way to evaluate the twig
for the XPath expression in Fig. 1. After having joined thetitle elements with the con-
tent elements “XML”, the latter ones are not needed anymore for the evaluation of the
rest of the query; a semi-join suffices.

Enable join reordering. Join reordering is crucial for the query optimizer which
should be able to plan the query evaluation with any join order to exploit given data
distributions. As a consequence, we need operators for the reverse axesancestorand
parent, too (e. g., the semi-join operator betweentitle and “XML” in Fig. 4 actually
calculates the parent axis).

Avoid duplicate removal and sort operations whenever possible. By using only al-
gorithms that do not generate duplicates and operate on unordered input sequences, the
query optimizer can ignore these problems. However, the optimizer has to ensure the
correct output order, requiring a final sort operator. In some cases, this operator can be
skipped: If we assume that the element scans at the leaf nodesof the operator tree in
Fig. 4 return the queried element sequences in document order (as, for example, our
element index assures), then, because the last semi-join operator is simply a filter for
name elements (see Sect. 3.1), the correct output order is automatically established.

Design dual algorithms that can hash the smaller input sequence. The construction
of an in-memory hash table is still an expensive operation. Therefore, our set of algo-
rithms should enable the query optimizer to pick an operatorthat hashes the smaller of
both input sequences and probes the other one, yielding the same result.

6 C. Mathis, T. Härder

Table 1.Classification of Hash-Join Operators

Output
Hashed ancestor/parent descendant/child full join

Class 1: UpStep Class 2: TopFilter Class 3: FullTopJoin
parent //a[b] //a/b //a/b, //a[b]

ParHashA ChildHashA ChildFullHashA
ancestor //a[.//b] //a//b //a//b, //a[.//b]

AncHashA DescHashA DescFullHashA
Class 4: BottomFilter Class 5: DownStep Class 6: FullBottomJoin

child //a[b] //a/b //a/b, //a[b]
ParHashB ChildHashB ChildFullHashB

descendant //a[.//b] //a//b //a//b, //a[.//b]
AncHashB DescHashB DescFullHashB

3.1 Classification of Algorithms

We can infer three orthogonal degrees of freedom for structural hash-join algorithms:
the axis that has to be evaluated (parent/child/ancestor/descendant); the modeof the
join (semi/full); and the choice of which input sequence tohash(A or B)4. The fol-
lowing naming scheme is used for our operators:<axis> + <mode> + <hash>:
{Par|Child|Anc|Desc} {Semi|Full} Hash{A|B} (“Semi” is omitted for
brevity). For example, the join operator betweentitle and “XML” in Fig. 4 is a
ParHashB operator, because it calculates the parent axis, is a semi-join operator, and
hashes the sequence of possible children.

For an overview of all possible operators refer to Table 1: The column header defines
the input to be hashed, whereas the row header defines the output. For clarification of
the semantics, each operator is additionally described by an XPath expression where
the input sequence to hash is marked in bold face. The names ofthe operator classes
describe the evaluation strategy of the join. They will be discussed in the following.
Note, class 1–3 algorithms are dual to class 4–6 algorithms,i. e., they calculate the
same result as their corresponding algorithms, but hash a different input sequence.

3.2 Implementation

To abstract from operator scheduling and dataflow control, we let all operators act in the
same operating system thread and use the well-known iterator-basedopen-next-close
protocol as a basis for the evaluation. Each algorithm receives two input sequences of
tuples, where, due to intermediate result unnesting, duplicates on the join fields have to
be expected.

All proposed algorithms in this paper consist of two phases.In phase one, a hash
tableht is constructed using the join field of the tuples of one input sequence (either
sequence A or B). In phase 2, the join field of the other input sequence is probed against
ht. Depending on how a result tuple is constructed, the operators can be assigned to
one of the six classes:Full*Join operators return a sequence of joined result tuples just
as earlier proposals for structural join algorithms (e. g.,[1]). Note, the qualifiers “Top”
and “Bottom” denote which input sequence is hashed. The remaining classes contain

4 Note, in the following,A denotes the sequence of possible ancestors or parents (depending on
the context), whereasB denotes descendants or children.

Hash-Based Structural Join Algorithms 7

Input: TupSeq A,B, Axis aixs, bool hashA
Output: TupSeq results,Local:HashTable ht

1 // phase 1: build hash table
2 if (hashA)
3 foreach (Tuple a in A)
4 hash a.jField() in ht;
5 else if (axis is ‘Par’ or ‘Child’)
6 foreach (Tuple b in B)
7 hash b.jField().parent() in ht;
8 else if (axis is ‘Anc’ or ‘Desc’)
9 List levelOcc = getLevels(A);

10 foreach (Tuple b in B)
11 foreach (level in levelOcc)
12 hash b.jField().anc(level) in ht;
13

14 // phase 2: probe
15 foreach (Tuple t in ((hashA) ? B : A)
16 if (! hashA and
17 t.jField() in ht) results.add(t);
18 else if (axis == ‘Child’ or ‘Par’)
19 if (t.jField().parent() in ht)
20 results.add(t);
21

22 else if (axis == ‘Desc’ or ‘Anc’)
23 List levelOcc = getLevelsByProb(A);
24 foreach (level in levelOcc)
25 if (t.jField().anc(level) in ht)
26 results.add(t);
27 break inner loop;
28

29 function hashEnqueue
30 (SPLID s, Tuple t, HT ht)
31 Queue q = ht.get(s);
32 q.enqueue(t);
33 hash (s, q) in ht;
34

35 function hashDelete (SPLID s, HT ht)
36 Queue q = ht.get(s);
37 foreach (Tuple t in q)
38 results.add(t);
39 ht.delete(s);
40

41 function hashFull
42 (SPLID s, Tuple current, HT ht)
43 Queue q = ht.get(s);
44 foreach (Tuple t in q)
45 results.add(new Tuple(t, current));

Fig. 5. *Filter Operator and Auxiliary Functions for *Step and Full*Join

semi-join algorithms.*Filter operators use the hash table, constructed for one input
sequence to filter the other one, i. e., tuples are only returned from the probed sequence.
*Stepoperators work the other way around, i. e., they construct the result tuples from
the hashed input sequence.

*Filter Operators (see Fig. 5): In phase one, forChildHashA andDescHashA,
the algorithm simply hashes the SPLID of the elements of the join fields (accessed
via methodjField()) into ht (line 4). Then, in phase two, the algorithm checks for
each tuplet in B, whether the parent SPLID (line 19 forChildHashA) or any ancestor
SPLID (line 25 forDescHashA) of the join field is contained inht. If so, t is a match
and is appended to the result. Actually, for the descendant operator, we had to check all
possible ancestor SPLIDs which could be very costly. To narrow down the search, we
use the meta-information, at which levels and by which probability an element of the
join field of A occurs (line 23). This information can be derived dynamically, e. g., when
the corresponding elements are accessed via an element index scan, or kept statically in
the document catalog.

The strategy forParHashB andAncHashB is similar, with the difference, that in
the hash phase the algorithm uses the join fields of input B to precalculate SPLIDs that
might occur in A (lines 7 and 12). Again for the descendant operator, we use the level
information (line 9), but this time the probability distribution does not matter. In the
probing phase it only has to be checked, whether the current join field value is inht.

Obviously, the output order of the result tuples is equal to the order of the probed
input sequence. Furthermore, if the probed input sequence is tuplewise duplicate free,
the algorithm does not produce any duplicates. Thehashedinput sequence may contain
duplicates. However, these are automatically skipped, whereas collisions are internally
resolved by the hash table implementation.

8 C. Mathis, T. Härder

*Step Operatorsconceptually work in the same way as their corresponding*Filter
operators. However, they do not return tuples from the probed, but from the hashed input
sequence. Accordingly, tuples that have duplicates on the join field (e. g., TupSeq A of
Fig. 6a) may not be skipped (as above) but have to be memorizedfor later output. The
new algorithms work as follows: In the hash phase, the function hashEnqueue()
(Fig. 5 line 29) is called instead of the simple hash statements in lines 4, 7, and 12). The
first argument is the SPLIDs of the join field (or itsparent/ancestorSPLID). Function
hashEnqueue() checks fors whether or not an entry is found in hash tableht (line
31). If so, the corresponding value, a queueq, is returned to which the current tuple is
appended (line 32). Finally,q is written back into the hash table (line 33).

In the probing phase, we substitute the hash table lookup andresult generation (lines
17, 19–20, 25–26) with thehashDelete() method (Fig. 5 line 35). For the given
SPLID s to probe, this method looks up the corresponding tuple queue in the hash table
and adds each contained tuplet to the result. Finally, the entry fors and its queue are
removed from the hash table, because the result tuples have to be returned exactly once
to avoid duplicates. The sort order of these algorithms is dictated by the sort order of
the input sequence used for probing. If the hashed input sequence did not contain any
duplicates, the result is also duplicate free.

Full*Join Operatorsresemble the*Stepoperators. The only difference is the re-
sult generation. While*Stepalgorithms are semi-join operators that do not produce
a joined result tuple,Full*Join operators append the current result tuple with all tu-
ples matched (as depicted in methodhashFull(), Fig. 5 line 41). Note, opposed to
hashDelete(), in hashFull() no matched entries fromht are deleted. For a
brief full join example see Fig.6a: input sequence A for theChildFullHashA oper-
ator is hashed on join field 1, thereby memorizing tuples withduplicates in the related
queues. Then, the tuples from sequence B are probed against the hash table. For each
match, each tuple in the queue is joined with the current tuple from B and appended to
the result.

Space and Time Complexity. The space complexity (number of tuples stored) and
time complexity (number of hashes computed) of the operators depend on the axis to
be evaluated. Letn = |A| andm= |B| be the sizes of the input sequences. For thepar-
ent/child axis, the space and time complexity isO(n+m). For theancestor/descendant
axis, the heighth of the document also plays a role. Here the space complexity for
classes 1–3 is alsoO(n+ m), whereas the time complexity isO(n+ h∗m) (for each
tuple in sequence B up toh hashes have to be computed). For classes 4–6, both space
and time complexity areO(n+h∗m).

Beyond Twig Functionality: Calculation of Sibling Axes. With hash-based schemes
and a labeling mechanism enabling the parent identification, thepreceding-siblingand
thefollowing-siblingaxes are—in contrast to holistic twig join algorithms—computable,
too. Due to space restrictions, we can only show filtering algorithms, corresponding to
the *Filter classes above: In phase 1 operatorsPreSiblHashA andFollSibl-
HashA (see Fig. 6b) create a hash tableht to store key-value pairs ofparent/child
SPLIDs. For each element in A, parentp is calculated. Then the following-sibling

Hash-Based Structural Join Algorithms 9

[1.3, 1.3.5]
[1.3, 1.3.7]
[1.5, 1.5.5]
[1.5, 1.5.7]
[1.7, 1.7.3]
...

[1.5]
[1.3]

[1.7]

[1.3.3]
[1.7.5]
...

TupSeq A TupSeq B

JoinFields

HashKeys HashValues

phase 1: hash

phase 2: probe

Results

[1.3, 1.3.5, 1.3.3]
[1.3, 1.3.7, 1.3.3]

...
[1.7, 1.7.3, 1.7.5]

[1.5, 1.5.5], [1.5, 1.5.7]
[1.3, 1.3.5], [1.3, 1.3.7]

[1.7, 1.7.3]

Input: TupSeq A, B, Axis aixs
Output: TupSeq results, Local:HashTable ht

1 // phase 1: build hash table
2 foreach (Tuple a in A)
3 checkAndHash(a.jField(), axis)
4

5 // phase 2: probe
6 foreach (Tuple b in B)
7 SPLID s = ht.get(b.parent());
8 if((axis == ‘PreSibl’ and
9 b.jField().isPreSibl(s)) or

10 (axis == ‘FollSibl’ and
11 b.jField().isFollSibl(s)))
12 results.add(b);
13

14 function checkAndHash(SPLID a, Axis axis)
15 SPLID s = ht.get(a.parent());
16 if((s is NULL) or
17 (axis == ‘PreSibl’ and
18 not s.isPreSibl(a)) or
19 (axis == ‘FollSibl’ and
20 not s.isFollSibl(a)))
21 ht.put(a.parent(), a);

Fig. 6.a) Full*Join Example and b) Sibling Operator

(preceding-sibling) axis is evaluated as follows: For eachparent SPLIDp, the small-
est (largest) child SPLIDc in A is stored inht. This hash table instance is calculated
by successive calls to thecheckAndHash() method (lines 14 to 21). While probing
a tupleb of input B, the algorithm checks whether the SPLID on the joinfield of b is a
following-sibling (preceding-sibling) ofc, that has the same parent (lines 6 to 12). If so,
the currentb tuple is added to the result. Clearly, these algorithms reveal the same char-
acteristics as their corresponding*Filter algorithms: They do not produce any tuplewise
duplicates and preserve the order of input sequence B.

4 Quantitative Results

To substantiate our findings, we compared the different algorithms by one-to-one opera-
tor comparison on a single-user system. All tests were run onan Intel XEON computer
(four 1.5 GHz CPUs, 2 GB main memory, 300 GB external memory, Java Sun JDK
1.5.0) as the XDBMS server machine and a PC (1.4 GHz Pentium IVCPU, 512 MB
main memory, JDK 1.5.0) as the client, connected via 100 MBitethernet to the server.

To test the dependency between runtime performance and query selectivity, we gen-
erated a collection of synthetic XML documents, whose structure is sketched in Fig. 7.
Each document has a size of 200 MB and contains bibliographicinformation. Because
we were mainly interested in structural join operators for element sequences, the gen-
erated documents do not contain much text content. The schema graph is a directed
acyclic graph (and not a tree), because an author element maybe the child of either
a book or an article element. We generated the documents in such a way, that we ob-
tained the following selectivity values for the execution of structural joins between input
nodes: 1%, 5%, 10%, 50%, and 100%. For example, for the query//book[title],

10 C. Mathis, T. Härder

bib

book+ journal+

author+

{booktitle|title} journalnamearticle+

{arttitle|title}

name organization

address

city

{london|seattle|ordino|funafuti|...}

{usa|france|andorra|tuvalu|...}

*Filter Queries:

a) //book[title] or //book/title

b) //journal[.//title] or

 //journal//title

*Step and Full*Join Queries:

a) //author[tuvalu] or

 //author/tuvalu

b) //organization[.//andorra] or

 //organization//andorra

Fig. 7. Document Schema and Sample Queries

selectivity 1% means that 1% of alltitle elements have abookelement as their parent
(all others have thearticle element as parent). Additionally, we created 10% noise on
each input node, e. g., 10% of allbookelements have the childbooktitleinstead oftitle.

4.1 Join Selectivity Dependency of Hash-Based Operators

In a first experiment, we want to explore the influence of the join selectivities of the
input sequences and, in case of varying input sequence sizes, their sensitivity on the
hash operator performance. All operators presented in Table 1 revealed the same per-
formance characteristics as a function of the join selectivity. Hence, it is sufficient to
present an indicative example for which we have chosen theDescFullHash* oper-
ators. For the query//journal//title, the size of the input sequence containing
journal elements varies from around 2,000 to 200,000 elements, whereas the size of the
title sequence remains stable (roughly 200,000 elements). Fig. 8a illustrates the runtime
performance of theDescFullHashAoperator and theDescFullHashBoperator for the
same query. For selectivities smaller than 10%, the runtimeof each operator remains
quite the same, because in these cases external memory access costs for the node ref-
erence indexes (column sockets) dominate the execution time, whereas the time for the
hash table creation and probing remains roughly the same. However for selectivities>
10%, the runtime increases due to higher CPU costs for hashing and probing of larger
input sequences. The gap between theDescFullHashA and theDescFullHashB
operator results from hashing the wrong—i. e., the larger—input sequence (title) instead
of the smaller one (in operatorDescFullHashB). Therefore, it is important that the
query optimizer chooses the right operator for an anticipated data distribution.

4.2 Hash-Based vs. Sort-Based Schemes

In the next test, we want to identify the performance differences of our hash-based
schemes as compared to sort-based schemes. For this purpose, we implemented the
StackTreealgorithm [1] and the structural join strategy from [14] calledAxisSort*in the
following. Both operators work in two phases: In phase 1, input sequences are sorted
using theQuickSortalgorithm. WhileStackTreeneeds to sort both input sequences,

Hash-Based Structural Join Algorithms 11

Fig. 8.a) DescFullHash* Characteristics, b) Operator Comparison

AxisSort*only needs to sort the smaller one. In phase 2,StackTreeaccomplishes its
ordinary join strategy, whileAxisSort*performs a binary search on the sorted input for
each element of the other input sequence. To compare our operators with minimal-cost
sort-based schemes, we introduce hypothetical operators which also sort the smaller
input sequence, but omit the probing phase. Thus, so-called*Fake operators do not
produce any output tuples. The result comparison is presented in Fig. 8b. Having the
same join selectivity dependency, our hash-based operators are approximately twice as
fast as the sort-based operators (with result construction). The figures for theStackTree
algorithm impressively demonstrate that sort operations on intermediate results in query
plans should really be avoided if possible. Finally, the hash-based operators—with their
“handicap” to produce a result—match the sort-based fake operators.

4.3 Memory Consumption

Finally, we measured the memory consumption of hash-based and sort-based oper-
ators. On the generated document collection, we issued the query //organiza-
tion[.//andorra], where the number of andorra elements varied from 2000 to
200.000, whereas organization elements remained stable (at roughly 200.000). For com-
parison, we used theDescFullHashB5 and theDescFullSortB operator. In all
selectivity ranges, the internal hash table of the hash-based operator consumed three to
four times more memory than the plain array of the sort-basedone. To reduce this gap,
a space optimization for hash-based operators is possible:Each key contained in the
hash-table (as depicted in Fig. 6a) is repeated (as a prefix) in the join field value of the
tuples contained in the key’s queue. This redundant information can safely be disposed
for a more compact hash table.

In a last experiment, we compareDescFullHashB with AncHashB. Here, the
semi-join alternative required around three times fewer memory than the full join vari-
ant on all selectivities. This circumstance is also a strongargument for our proposal,
that the query optimizer should pick semi-join operators whenever possible.

5 Note, regarding the space complexity,DescFullHashB is one of the more expensive repre-
sentative among the hash-based operators (see 3.2).

12 C. Mathis, T. Härder

5 Conclusions

In this paper, we have considered the improvement of twig pattern queries—a key re-
quirement for XML query evaluation. For this purpose, we have substantially extended
the work on structural join algorithms thereby focussing onhashing support. While
processing twig patterns, our algorithms, supported by appropriate document store and
index structures, primarily rely on SPLIDs which flexibly enable and improve path pro-
cessing steps by introducing several new degrees of freedomwhen designing physical
operators for path processing steps.

Performance measurements approved our expectations abouthash-based operators.
They are, in the selectivity range 1%–100%, twice as fast as sort-based schemes and
not slower than the*Fake operators. As another beneficial aspect, intermediate sorts
in QEPs can be drastically reduced. Such hash-based operators should be provided—
possibly with other kinds of index-based join operators—ina tool box for the cost-based
query optimizer to provide for the best QEP generation in allsituations.

References

1. S. Al-Khalifa et al.: Structural Joins: A Primitive for Efficient XML Query Pattern Matching.
Proc. ICDE: 141-152 (2002)

2. T. Böhme, E. Rahm: Supporting Efficient Streaming and Insertion of XML Data in RDBMS.
Proc. 3rd DIWeb Workshop: 70-81 (2004)

3. N. Bruno, N. Koudas, D. Srivastava: Holistic twig joins: optimal XML pattern matching. Proc.
SIGMOD: 310-321 (2002)

4. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. Zaniolo: Efficient Structural Joins on
Indexed XML Documents. Proc. VLDB: 263-274 (2002)

5. M. Dewey: Dewey Decimal Classification System. http://www.mtsu.edu/ vvesper/dewey.html
6. M. Fernandez, J. Hidders, P. Michiels, J. Simeon, R. Vercammen: Optimizing Sorting and

Duplicate Elimination. Proc DEXA: 554-563 (2005).
7. M. Fontoura, V. Josifovski, E. Shekita, B. Yang: Optimizing Cursor Movement in Holistic

Twig Joins, Proc. 14th CIKM: 784-791 (2005)
8. G. Gottlob, C. Koch, R. Pichler: Efficient algorithms for processing XPath queries. ACM

Trans. Database Syst. 30(2): 444-491 (2005)
9. T. Härder, M. Haustein, C. Mathis, M. Wagner: Node Labeling Schemes for Dynamic XML

Documents Reconsidered, accepted for Data & Knowledge Engineering (2006)
10. Q. Li, B. Moon: Indexing and Querying XML Data for RegularPath Expressions. Proc.

VLDB: 361-370 (2001)
11. Q. Li, B. Moon: Partition Based Path Join Algorithms for XML Data. Proc. DEXA: 160-170

(2003)
12. P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury: ORDPATHs: Insert-

Friendly XML Node Labels. Proc. SIGMOD: 903-908 (2004)
13. I. Tatarinov et al.: Storing and Querying Ordered XML Using a Relational Database System.

Proc. SIGMOD: 204-215 (2002)
14. Z. Vagena, M. M. Moro, V. J. Tsotras: Efficient Processingof XML Containment Queries

using Partition-Based Schemes. Proc. IDEAS: 161-170 (2004)
15. Y. Wu, J. M. Patel, H. V. Jagadish: Structural Join Order Selection for XML Query Opti-

mization. Proc. ICDE: 443-454 (2003).
16. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohmann, On Supporting Containment

Queries in Relational Database Management Systems. Proc. SIGMOD: 425-436 (2001)

