
Now it’s Obvious to The Eye—Visually Explaining XQuery
Evaluation in a Native XML Database Management System

Andreas M. Weiner, Christian Mathis, Theo Härder, and Caesar Ralf Franz Hoppen
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
{weiner, mathis, haerder, hoppen}@cs.uni-kl.de

Abstract: As the evaluation of XQuery expressions in native XML database manage-
ment systems is a complex task and offers several degrees of freedom, we propose a
visual explanation tool—providing an easily understandable graphical representation
of XQuery—for tracking the XQuery evaluation process from head to toe.

1 Introduction

Syntactic and Semantic Analysis
Normalization

Static Type Checking
Simplification

XQuery Expression

XQGM Instance

Query Execution Plan

Query Result

Translation

Optimization

Execution

Query Rewrite
Query Transformation

Interpretation

Figure 1: The XTC query
evaluation process

In recent years, XML gained a lot of attention as a means for
exchanging structured and semi-structured data. Native XML
database management systems (XDBMSs) are a promising
approach for storing and managing such documents in a
transactional way. Having a closer look at XQuery—the
dominant query language for XML—reveals that it is an ex-
tremely powerful, but at the same time, a very complex query
language. In this work, we present the XPlain tool for visu-
ally explaining the evaluation of XQuery expressions in XTC
(XML Transaction Coordinator) [HH07]—our prototype of a
native XDBMS. Using our tool, we can track the complete
XQuery evaluation process beginning at the translation of the
query into an internal representation, ranging over the appli-
cation of several rules for algebraic optimization, and ending in a query execution plan
which is executed using the query evaluation engine of XTC.

We are not aware of any tool that allows to follow all stages of the XQuery evaluation
process from the beginning to the end in a catchy way that is even easy to understand for
XQuery novices and non-database experts. Our visual explanation tool supports different
types of users in improving their work: (1) Developers of XML query optimizers can
immediately see the impact of rewrite and optimization rules on subsequent query graphs,
(2) Lecturers benefit from our self-explanatory graphical query representation and can use
it to teach undergraduate XQuery classes, and (3) Database administrators can focus solely
on the query execution plan and speed-up query evaluation by creating new indexes or by
activating or deactivating different rewrite or optimization rules.



2 Related Work

Compared to the work of Rittinger et al. [RTG07], which empowers a relational query
optimizer to evaluate XQuery expressions and visualizes only QEPs, we are able to illus-
trate every step in the query evaluation process. Furthermore, by sticking to a rule-based
approach, we can re-configure our query optimizer even at runtime.

3 Architectural Issues

Figure 2: A sample
XQGM instance

Figure 1 shows the three stages of the XTC query evaluation pro-
cess: translation, optimization, and execution. During the trans-
lation stage, an XQuery statement is checked for syntactical and
semantical correctness. These checks are followed by a normal-
ization phase, where semantically equivalent queries are mapped
to a common normal form expression according to the formal
semantics of XQuery.

Before the normal form expression is mapped to the so-called
XML Query Graph Model (XQGM) [WMH08]1, we perform
static type checking and apply several simplification rules to
remove redundant parts of the query. For example, Figure 2
shows a graphical representation of the XPath path expression
doc(“auction.xml”)//site//mail which was exported using XPlain.
Because an XQGM instance is equivalent to a logical algebra ex-
pression, it allows to perform algebraic optimization. Based on
an XQGM graph provided as input for the optimization stage,
several rewrite rules, e. g., query unnesting [Mat07] and join fu-
sion [WMH08] are applied, resulting in a semantically equiva-
lent structure which can be evaluated more efficiently than the
initial one. In the query transformation step, a rewritten XQGM
instance is mapped to a Query Execution Plan (QEP) (physi-
cal algebra expression). Finally, the QEP is executed by di-
rect interpretation using the well-known open-next-close proto-
col [Gra93].

We developed our query optimizer following a strictly extensi-
ble rule-based approach, i. e., every modification of an XQGM
instance (e. g., by algebraic rewrite) is specified by a rule con-
sisting of a pattern and an action part. Patterns are identified by
our generic pattern matching engine and the actions are applied
by a transformation engine. Consequently, we can (1) easily ex-
tend our system by adding new rules and (2) switch on and off
specific simplification, rewrite, and logical-to-physical mapping

1Note, the XQGM is an extended version of Starburst’s well-known Query Graph Model (QGM) [PHH92]
which we made to measure for the XQuery language.



Figure 3: The XPlain GUI

rules according to our needs. Thus, we can play the role of a query optimizer and imme-
diately see the impact of different optimization strategies even at runtime.

Whenever an action is performed by the transformation engine, a textual representation
of the resulting XQGM graph—a so-called dot graph—is generated reflecting all changes
performed. By doing so, we get a complete history of all transformations applied to the
initial XQGM graph as well as a graphical representation of the final QEP.

The XPlain tool—implemented using Java 1.6—provides a sophisticated Swing-based
GUI and connects to the XTC server as a client using Java RMI. It receives the query
result, statistics on each phase of the query evaluation process, and all dot plans gener-
ated. Using the GraphViz visualization software [EGKW03]—a powerful framework for
layouting huge graphs—all dot plans are converted into Scalable Vector Graphic (SVG)
instances which are rendered in the XPlain GUI using the Apache Batik SVG Toolkit2.

Figure 3 shows the XPlain GUI. At the left-hand side, you can see a list of all docu-
ments currently stored on the server (top-most box), the path synopsis—a kind of dynamic
schema allowing to create XPath path expressions just by clicking on the node names (box
in the middle), and meta data on currently available indexes for each document (bottom
line). The main panel displays a rendered XQGM graph corresponding to the query en-
tered in the text box atop of it. At the top-most right side, you can select a query from
predefined query sets3. Furthermore, the right side shows the history of all dot plans gen-
erated during query evaluation, which can be rendered by just selecting the corresponding

2http://xmlgraphics.apache.org/batik
3For example, Figure 3 shows the query graph for query Q7 of the well-known XMark benchmark queries

[SWK+02].



item. Moreover, by using the up-and-down buttons, you can linearly track each modifica-
tion of the XQGM graph from beginning to the end. Finally, the menu bar provides three
major menus (simplification, restructuring, and transformation) allowing to select all rules
to be applied during query evaluation. Figure 3 shows the complete transformation menu.
If there is more than one pattern finding a match in the graph, we can assign a priority
to each rule, which may be used to give preferences over alternative ones. Because there
are several dependencies between rules within and across the simplification, restructuring,
and transformation rule sets, we provide predefined rule sets to choose from and support
creating custom rule sets by experienced users.

4 Demonstration Setup

During the demonstration session, we come up with a predefined set of XMark benchmark
queries [SWK+02] and provide different-sized XMark documents to run these queries
on. Furthermore, we furnish different rule sets allowing to visually compare the impact
of varying query evaluation strategies: Using the node-at-a-time configuration, we can
explore how a query is evaluated according to XQuery’s formal semantics. On the other
hand, using different set-at-a-time configurations, we illustrate how exclusive or combined
use of structural joins, holistic twig joins, and different index access operators can boost
query execution tremendously.

References

[EGKW03] J. Ellson, E.R. Gansner, E. Koutsofios, and S.C. Northand G. Woodhull. Graphviz and Dynagraph—
Static and Dynamic Graph Drawing Tools. In M. Junger and P. Mutzel, editors, Graph Drawing
Software, pages 127–148. Springer, 2003.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys,
25(2):73–170, 1993.

[HH07] Michael Haustein and Theo Härder. An Efficient Infrastructure for Native Transactional XML
Processing. Data & Knowledge Engineering, 61(3):500–523, 2007.

[Mat07] Christian Mathis. Extending a Tuple-Based XPath Algebra to Enhance Evaluation Flexibility. In-
formatik – Forschung und Entwicklung, 21(3–4):147–164, 2007.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/Rule Based Query Rewrite
Optimization in Starburst. In Proc. SIGMOD Conference, pages 39–48, 1992.

[RTG07] Jan Rittinger, Jens Teubner, and Torsten Grust. Pathfinder: A Relational Query Optimizer Explores
XQuery Terrain. In Proc. BTW Conference, pages 617–620, 2007.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, and Ralph
Busse. XMark: A Benchmark for XML Data Management. In Proc. VLDB Conference, pages
974–985, 2002.

[WMH08] Andreas M. Weiner, Christian Mathis, and Theo Härder. Rules for Query Rewrite in Native XML
Databases. In Proc. EDBT DataX Workshop, pages 21–26, 2008.


