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Abstract

Because XML documents tend to be very large, are
accessed by declarative and navigational languages,
and often are processed in a collaborative way using
read/write transactions, their fine-grained storage and
management in XML DBMSs is a must for which, in
turn, a flexible and space-economic tree representation
is mandatory. In this paper, we explore a variety of
options to natively store, encode, and compress XML
documents thereby preserving the full DBMS process-
ing flexibility on the documents required by the various
language models and usage characteristics. Important
issues of our empirical study are related to node
labeling, document container layout, indexing, as well
as structure and content compression. Encoding and
compression of XML documents with their complete
structure leads to a space consumption of ~40% to
~60% compared to their plain representation, whereas
structure virtualization (elementless storage) saves in
the average more than 10%, in addition.

1. Motivation

So far, XML research primarily focuses on the
management of a few isolated documents which are
typically very large (up to several GBytes). Frequently
cited examples are available from [15] which reveal
huge storage consumption and processing require-
ments. In many cases [9], [10], storage structures are
optimized for specific situations and indexing schemes
only support searching (say, based on XPath predi-
cates) within a single document. For general DBMS
use, it is mandatory to preserve the full processing flex-
ibility of the “original” documents, while it is highly
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advisable to provide encoded and suitably compressed
storage structures to save storage space and transfer
time.

What are the essential characteristics of such XML
documents? An empirical study [14] gathered about
200,000 XML trees worldwide where 99% have less
than 8 levels, i. e., less than depth 8 which should
be the primary goal of optimization. Almost all of the
remaining 1% documents range between 8–30. Only
a tiny fraction of the documents gathered has more
than 30 levels. To gain some insight into the structural
parameters, we have empirically explored a variety of
XML documents [7], for which we can only list a
summary of the results. The document size is measured
in the plain format where the XML document is
stored in its external “verbose” representation without
any compression technique applied (readable element
and attribute names, empty spaces, etc., but without
node labels used for DBMS-internal processing). The
entries in Table 1 contain a representative subset of all
documents, called reference documents, and serve as
our test set in the following. These documents range
from a uniform XML structure of moderate depth (4)—
representing the content of a relational table—to GB-
sized documents of rich XML structures and larger
depths. As the last entry, treebank is included to show
an exotic outlier used to determine the reach of our
optimization efforts.

These documents are rather data-centric than
document-centric, as confirmed by the column ’avg.
value size per content node’ in Table 1. For issues
such as content compression and relative mapping
overhead due to node labeling when natively stored,
this kind of documents represent bad or even worst
cases. As visualized in Figure 3 and 6, most space is
consumed by mapping and control information (node
labels, administrative data, etc.) rather than content
values. In contrast, document-centric XML structures,



Table 1: Characteristics of XML documents considered

doc 
name description size in

Mbytes
# elem. & 
attr. nodes

# content 
nodes

avg. value 
size per 

content node
# vocab. 
names

# path 
classes

max.
depth

avg.
depth

line-
item

LineItems from
TPC-H benchmark 32.3 1,022,977 962,801 12.5 19 17 4 3.45

uni-
prot

Universal protein 
resource 1,821.0 81,983,492 53,502,972 24.0 89 121 7 4.53

dblp Computer science 
index 330.0 9,070,558 8,345,289 17.0 41 153 7 3.39

psd-
7003

DB of protein 
sequences 717.0 22,596,465 17,245,756 6.5 70 76 8 5.68

nasa Astronomical data 25.8 532,967 359,993 20.9 70 73 9 6.08
tree-
bank

English records of
Wall Street Journal 89.5 2,437,667 1,391,845 33.4 251 220,894 37 8.44

e.g., in digital libraries where a leaf node may host
the text of a paper or even a book, have much better
overhead/content ratios and would provide much more
opportunity especially for content compression.

For the empirical study and all measurements in
this paper, we use our prototype DBMS called XTC
(XML Transaction Coordinator [8]) which stores and
manages XML documents in a native way. To opti-
mize XML storage structures, we describe the most
important concepts and options in Section 2. In Section
3, we analyze the storage consumption of formats
which store the complete document, i. e., structure
and content. In Section 4, we develop a method to
virtualize the documents’ structure without loosing
functionality, before we show that the use of path
synopses scales and is a general method to replace
the document structure in the storage format. Finally
in Section 5, we wrap up with conclusions.

2. Fine-Grained XML Storage

Efficient and effective processing including concur-
rent read/write operations on XML documents are
greatly facilitated, if we use a fine-grained, tree-like
internal representation. For this reason, we have imple-
mented in our XTC system an XML tree representation
as defined in [20]. In the following, we discuss the core
issues of the so-called dynamic DOM storage model
exemplified by Figure 1. The structure consists of all
inner nodes including the node labels, whereas the leaf
nodes together with their labels capture the content of
the document.

2.1. Node Labeling

After quite some practical experience, we are con-
vinced that node labeling is the key to efficient man-
agement and compression of XML documents. Early

requirements included navigational and declarative ac-
cess of static XML documents which put the only fo-
cus on the fast evaluation of the 13 axes (parent/child,
ancestor/descendant, ...) of the XPath 2.0 and XQuery
language models thereby guaranteeing the sequence
semantics. Using complete k-ary trees [12] to establish
a consecutive numbering scheme enabled direct and
very cheap node label computation for the checking of
axes predicates, but failed in case of real documents
having incomplete structure of considerable breadth
and depth, not to mention dynamic documents.

Substantial development effort was spent on label-
ing schemes supporting dynamic XML documents for
which various forms of range-based and prefix-based
schemes were proposed [3], [5]. Although equivalent
for checking axes predicates, range-based schemes
seem to exhibit some inflexibility when extensive doc-
ument updates (subtree insertions) have to be accom-
modated. They completely fail if fine-grained docu-
ment locking has to be supported. When entering inner
nodes of the document via indexes, the entire ancestor
path up to the root has to be protected by intention
locks [13]. The required functionality to determine all
ancestor node labels comes for free using prefix-based
schemes, whereas range-based schemes need access to
the document and/or additional indexes, thus, typically
provoking disk accesses. As a consequence, prefix-
based schemes are preferable for dynamic documents
with multi-user read/write transactions and also for
speeding up index-based processing (see Section 4.4).

An intensive comparison of labeling schemes and
their empirical evaluation [7] led us to redesign the
existing mechanism in XTC based on a straightfor-
ward numbering scheme. DOM trees empowered with
prefix-based node labels can be considered as an
abstract access model much more flexible for XML
document processing; it served as a powerful and adap-
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Figure 1: A sample DOM tree labeled with SPLIDs using dist=2

tive structure to be implemented by our storage model
in XTC. The prefix-based scheme for the labeling of
tree nodes is based on the concept of Dewey order
[4] characterized by Figure 1. The abstract properties
of Dewey order encoding—each label consists of so-
called divisions (separated by dots in the external
format) and represents the path from the document’s
root to the node and the local order w. r. t. the
parent node; in addition, optional sparse numbering
facilitates node insertions and deletions—are described
in [3]. Refining this idea, a number of similar labeling
schemes were proposed which differ in some aspects
such as overflow technique for dynamically inserted
nodes, attribute node labeling, or encoding mechanism.
Examples of such schemes are DLN [1] or Ordpath
[17] developed for Microsoft SQL ServerTM. Although
similar to them, our scheme is characterized by some
distinguishing features and is denoted DeweyIDs [7]; it
refines the Dewey order mapping: with a dist parameter
used to increment division values, it leaves gaps in
the numbering space between consecutive labels and
introduces an overflow mechanism when gaps for new
insertions are in short supply—a kind of adjustment to
expected update frequencies. Because any prefix-based
scheme is appropriate, we use the term SPLID (Stable
Path Labeling IDentifier) as synonym for all of them.

Existing SPLIDs are immutable, that is, they allow
the assignment of new IDs without the need to reor-
ganize the IDs of nodes present. When labels degrade
after weird insertion histories1, relabeling can be pre-

1. For example, point insertions of thousands of nodes between
two existing nodes can be attenuated by the dist parameter, but
nevertheless may produce large SPLIDs.

planned; it is only required, when implementation re-
strictions are violated, e. g., the max-key length in B*-
trees. Comparison of two SPLIDs allows ordering of
the respective nodes in document order. Furthermore,
SPLIDs easily provide the IDs of all ancestors, e.g., to
enable intention locking of all nodes in the path up to
the document root without any access to the document
itself [13]. For example, the ancestor IDs of 1.3.3.7.5.3
are 1.3.3.7.5, 1.3.3.7, 1.3.3, 1.3 and 1.

2.2. Physical Node Representation

Having in the order of 108 nodes in large XML
documents, node encoding needs careful optimization
considerations. All node formats (for elements, at-
tributes, or text) are of variable length. Element nodes
and attribute nodes only consist of a key part and a
name part, whereas a text node has only a key part
and a value part. Because the key part consisting of a
one-byte field KL (key length) and the encoded SPLID
is the Achilles heel of the storage representation (see
Figure 1 and 3), it must be reduced very efficiently.

As explored in [7], Huffman codes enable effective
and efficient encoding of division values. They consist
for each division of a variable-length Li-code and a
binary value Oi stored as (Li-code | Oi). Using a
specific encoding assignment such as in Table 2, a
division can be encoded and decoded. Because all
SPLIDs start with “1.”, we do not need to store
it and save 4 bits per SPLID. In addition, we can
adjust the Huffman encoding scheme to typical value
distributions in the SPLIDs and align codes and value
representations to byte boundaries. Hence, this flexi-



Table 2: Assigning codes to divisions

Li-code length Oi value range of Oi

0 3 1 – 7
100 4 8 – 23
101 6 24 – 87
1100 8 88 – 343
1101 12 344 – 4.439
11100 16 4.440 – 69.975 
11101 20 69.976 – 1.118.551
11110 24 1.118.552 – 17.895.767
11111 31 17.895.768 – 2.147.483.647

bility enables the tailor-made construction of Huffman
codes as illustrated in Table 2.

When traversing and storing XML trees in document
order (left-most depth-first order), as visualized in
Figure 3, the sequence of SPLIDs lends itself to prefix
compression in the key part. To exploit this observa-
tion, we designed a prefix-encoded SPLID represen-
tation consisting of a one-byte field Rpip (reduction
of prefix inherited from predecessor) and the actually
stored remainder (Rem) of the SPLID. Compression
is achieved as follows: Within a container page, as-
sume the SPLID sequence 1.3.3.17.33.3, 1.3.3.17.33.5,
1.3.3.17.33.7, 1.3.3.19.3, 1.3.3.19.3.3, ...; then, starting
with the first SPLID 1.3.3.17.33.3, we encode the
next SPLID by removing a number of divisions from
the end to get the common prefix with the current
SPLID and add the remainder as a new suffix division
sequence: hence, (Rpip+Rem) entries in our example
look as follows: ’-1’+.5, ’-1’+.7, ’-3’+.19.3, ’0’+.3, ...
Obviously, this kind of prefix compression achieved the
lion’s share of space saving. Applied to all SPLIDs in
the collection of our reference documents, we obtained
the indicative results illustrated in Figure 2. Hence, it
is safe to say that prefix compression reduces the space
consumed by SPLIDs down to ~25%.

2.3. Document Storage

Document storage is based on variable-length files
as document containers whose page sizes varying from
4K to 64K bytes could be configured to the document
properties. We allow the assignment of several page
types to enable the allocation of pages for documents,
indexes, etc. in the same container. Efficient declar-
ative or navigational processing of XML documents
requires a fine-granular DOM-tree storage represen-
tation which easily preserves the so-called round-trip
property when storing and reconstructing the document
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Figure 2: Efficiency of prefix compression

(i.e., the identical document must be delivered back to
the client). Furthermore, it should be flexible enough
to adjust arbitrary insertions and deletions of subtrees
thereby dynamically balancing the document storage
structure. Fast indexed access to each document node,
location of nodes by SPLIDs, as well as navigation
to parent/child/sibling nodes from the current context
node are important demands. As illustrated by Figure
3, we provide an implementation based on B*-trees
which maintains the nodes stored in document order
and which cares about structural balancing.

No matter what kind of language model is used for
document modification, its operations at the storage
level have to be translated into node- or record-at-
a-time operations. The overwhelming share of the
overhead caused by updates of nodes (names or values)
or by insertions/deletions of subtrees in the XML docu-
ment is carried by two valuable structural features: B*-
trees and SPLIDs. B*-trees enable logarithmic access
time under arbitrary scalability and their split mecha-
nism takes care of storage management and dynamic
reorganization. In turn, SPLIDs provide immutable
node labeling such that all modification operations can
be performed locally.

While indexed access and order maintenance are
intrinsic properties of such trees, some additional op-
timizations are needed. Variations of the entry layout
for the nodes allow for single-document and multi-
document stores, key compression, use of vocabularies,
and specialized handling of short documents. As shown
in Figure 3 by sketching the sample XML document
of Figure 1, a B-tree, the so-called document index,
with key/pointer pairs (SPLID+PagePtr) indexes the
first node in each page of the document container
consisting of a set of chained pages. Using sufficiently
large pages, the document index is usually of height 1
or 2. Because of reference locality in the B-tree while
processing XML documents, most of the referenced
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tree pages are expected to reside in DB buffers—thus
reducing external accesses to a minimum.

The value part of a content node is materialized
(stored inline) up to a parameterized max-val-size
together with the node as a string (of given type). When
the content size exceeds max-val-size, then it is stored
in referenced mode where it is divided in parts each
stored into a single page and reachable via reference
from its home page, as illustrated in Figure 4.

content pagecontainer page content page

header header

 ...
...

1.3.5

1.3.7.3

.5.5
1.3

 title
 book

Figure 4: Layout of long fields

2.4. Structure and Content Indexes

In addition to the document store, various indexes
may be created, which enable access via structure
(element or attribute nodes) or content (values of leaf
nodes). An element index consists of a name directory
with (potentially) all element names occurring in the
XML document (Figure 5); this name directory often
fits into a single page. Each specific element/attribute
name refers to the corresponding nodes in the docu-
ment store using SPLIDs. In case of short reference
list, they are materialized in the index; larger lists of
references may, in turn, be maintained by a node refer-
ence index as indicated in Figure 5. Content indexes are
created for root-to-leaf paths, e. g., /bib/book/title, and
again are implemented as B*-trees keeping for each
indexed value a list of SPLIDs as references to the
related locations in the document. When processing a

• last

• author •title

1.3.3.7 1.3.3.7.3 1.3.3.5

each of them sorted in document order

node-reference 
indexes (B*-trees)

name directory
(B-tree)

Figure 5: Organization of structure indexes

query, a hit list of SPLIDs is built using one or several
indexes. Then, the qualified nodes together with their
related path instances are located via the document
index (see Figure 3). In all cases, support of variable-
length keys and reference lists is mandatory; additional
functionality for prefix compression of SPLIDs is again
very effective.

2.5. Content Compression

There exists a large body of scientific contributions
dealing with XML compression technologies [16], [18]
promising enormous gains in storage saving and, at
the same time, enabling a kind of query processing
(restricted to very simple XPath expressions). How-
ever, all these approaches are coarse-granular thereby
directly compressing the plain, i.e., “verbose” repre-
sentation, assume static and file-based scenarios with
single-user operations, are often context-dependent re-
quiring large auxiliary data structures, and need poten-
tially substantial compression/decompression overhead
[19]. Therefore, these methods are not adequate for
dynamic XML structures processed in a multi-user
transactional DBMS context and, in turn, cannot be
considered as candidates for our fine-grained tree-like
structures.

Two of the main issues to be regarded for com-
pression of fine-grained XML documents in databases
result from the XML structure itself and its content.
In contrast to the relational world, where typically
column-based compression is used, the storage rep-
resentation of XML paths and their uncorrelated se-
quence of element/attribute names complicate “sim-
ple” path-based compression algorithms such as XMill
[11]. Furthermore, transactional modification applied
to XML documents prevents block-based compression
used by PPM algorithms [18]. Note, it does not seem
to be helpful to separate content and structure, only to
enable the concatenation of smaller values to larger text
blocks and, in this way, to achieve better compression
results. Such an approach would involve a complete
cycle of de- and re-compression when a specific node



value is modified. Thus, to avoid undue limitations
and overhead of XML processing, compression of
single node values seems to be an appropriate and
challenging choice. Therefore, we exclusively focus on
single nodes and their data stemming either from text
content or attribute values.

In our view, there exist two practical approaches
to such kind of compression. For compressing node-
based content, either word-based or character-based
compression algorithms can be applied. For example,
our vocabulary for element/attribute names can be con-
sidered as a specific word-based compression (applied
to the structure part) used in nearly all XML databases.
Due to the dynamic values of XML content nodes,
it would be hard to keep a word-based dictionary
for compression purposes up to date. In addition,
such a dictionary would not have size limitations
and, therefore, fast lookups in a memory-resident data
structure could not be guaranteed. Furthermore, all
our reference documents are rather data-centric having
relatively short content values where word-based com-
pression methods would cause too much overhead with
limited effect. Therefore, we prefer character-based,
context-free compression schemes like Huffman which
also accomplish homomorphic transformations which
guarantees that compressed and non-compressed doc-
uments can be processed by the same operations like
parsing, searching, or validating. Hence, we provide an
efficient and context-free compression/decompression
algorithm called Fixed Huffman (FH) which seems to
work sufficiently effective on data-centric documents,
i. e., short node values. On a document basis, we
build either a Huffman tree optimized w. r. t. the
typical character distribution of the document’s domain
or, during an analysis run, we collect the character
frequencies of the specific document and construct
the optimal Huffman tree for it. To adjust for later
document modifications, all 256 possible characters are
considered.

3. Complete XML Documents

So far, we have outlined the essential concepts used
for the optimization of native XML document storage.
In our empirical study, we focus on the variability
and optimization of storage structures which can be
chosen by the DBMS for incoming documents. The
question which secondary element/attribute indexes or
content indexes should be provided is orthogonal to
the choice of the native document structure and has
to be answered w. r. t. the expected workload. Here,
we primarily want to illustrate how much storage
consumption can be reduced by applying our storage

concepts to the documents. As a comparison mark, we
use the storage space needed for a document in its
textual representation, i. e., a document in the format
sent by the client (user) to the DBMS. We denote
this as the plain format and normalize all results for a
given document to this format (consuming 100%). In
the following, we distinguish for all formats between
the storage space needed for the content part and
the structure part. For the collection of our reference
documents, the storage consumption of ’plain’ is listed
in column 3 of Table 1. As illustrated in Figure 6 and
presented in the Appendix in greater detail, the relative
fraction of the plain structure part—as the prime target
of our optimization—ranges between ~45% and ~81%.

The standard format stands for the normally chosen
native XML document storage in DBMSs; it uses our
structural framework: For the content part, it stores
uncompressed content and SPLIDs and, for the struc-
ture part, SPLIDs, “long” VocIDs (2 bytes), and some
administrative data. Storage saving as compared to
plain is not really mind-blowing, because the reduction
gained in the structure part by VocID use is partially
compensated by SPLID labeling. For the content part,
substantially more space is needed in all cases as
compared to the plain content, because the relative
storage space needed for content nodes due to the
SPLIDs added is increased by up to ~50%. The highest
reduction for standard obtained by lineitem is ~30%.

The compressed format tries to save storage space
as much as possible and stores all structure and con-
tent nodes with prefix-compressed SPLIDs and with
“short” VocIDs (1 byte), because the vocabularies for
our reference documents are small (see column 7 in
Table 1). Furthermore, it compresses the content nodes
using the FH algorithm. In all cases, the content part is
smaller than in the plain format, although compressed
SPLIDs are added to the nodes. As summarized in
Figure 6, storage saving becomes remarkable and
ranges between ~40% and ~58% depending on the
structure and content particularities in the collection
of our reference documents.

The content part compression seems to be exhausted,
because data-centric documents with relative small
value sizes per content node (see col. 6 in Table 1)
do not lend themselves to content compression. Hence
for further optimizations, we should concentrate on the
structure part. Although we have squeezed it as far as
possible within the given tree context, it still consumes
quite some fraction of the total compressed document,
e.g., 168% of the content part of lineitem. Therefore,
a novel approach to virtualize the structure seems
appropriate, thereby reducing the space consumption
further without abandoning processing functionality.
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4. Virtualizing the XML Structure

So far, compression of structure has used the idea
of replacing long external names by so-called VocIDs
which index a vocabulary containing all distinct names
of elements and attributes. Nevertheless, each structure
node had to be explicitly represented and labeled by
a (prefix-compressed) SPLID. Obviously with I inner
nodes and L leaf nodes, I > L or I/L > 1 always
holds for all document trees (see Fig.1). To give a
rough estimate of the number of structure nodes, we
assume a complete tree of height h (h > 1) and fan-
out ni at level 1 < i < h and consider that each inner
node at level h− 1 has exactly one leaf node assigned
at level h. Then, we obtain

I = 1 +
h−1∑
i=2

h−1∏
j=2

nj

 and L =
h−1∏
i=2

ni (1)

Of course, I depends on the specific inner structure of
the document. The relationship I/L may be unbounded
(>> 1), if many one-way branches occur in the
structure part. In case of complete binary structure
trees (ni = 2 for i = 2, ..., h − 1), the well-known
relationship I/L < 2 holds. To estimate the degree of
redundancy present in the structure part, we have listed
indicative numbers in Table 1. By looking at columns
4 and 5, we can confirm that I/L is always less than
2. Now consider columns 7 and 8. It immediately
becomes clear, that huge repetitions are buried in the
names (resp. VocIDs) of the inner nodes and paths.

All paths from the root to the leaves having the same
sequence of element/attribute names form a path class.
Thus, each path in the document can be assigned to
one of the relatively few distinct path classes. Reflect-
ing these values, dramatic repetition factors become
obvious: consider uniprot, in the average, each VocID
is repeated >921,000 times and each path >442,000
times.

4.1. Path Synopsis

Our key idea is now to capture all path classes
of an XML document in a small data structure [6].
Having such a separate structure, we can remove and
drop the entire structure part from the physically stored
document and, nevertheless, are able to reconstruct
each path or the entire document, whenever needed.
Note, by providing such an on-demand option, we
don’t want to sacrifice functionality, but only safe sub-
stantial storage space. Again, the secret is the SPLID
mechanism with which each node carries a short-
hand representation of its entire path to the root. The
part missing to deliver the complete path information
are the attribute/element names (resp. VocIDs) of all
ancestor nodes. This task, we will “outsource” to a
so-called path synopsis.

For this purpose, we have designed a little memory-
resident data structure which maintains all path classes
of a document. Cyclic-free XML schemata capture
all information needed for the path synopsis; oth-
erwise, this data structure can be constructed while
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the document is stored. To illustrate our approach in
Figure 7, we have derived a path synopsis from the
document fragment sketched in Figure 1 extended by
some additional nodes and path classes. Such a concise
description of the document’s structure is a prerequisite
of effective virtualization of the structure, i.e., for an
elementless storage of the document. When comparing
them to the number of path instances, it becomes
obvious that huge redundancy is introduced when all
path instances are explicitly stored. In the popular dblp
document, for example, one of the dominating path
classes /bib/paper/author has ~570,000 instances.

Hence, when matching the right path class with
a given SPLID, it is very easy to reconstruct the
specific instance of this path class. In a sense, we
must associate the value in a document leaf—whose
unique position in the document is identified by its
SPLID—with a space-saving reference to its path class.
Furthermore, when document processing references an
inner node—for example, by following an element
index for author or by setting a lock on a particular
book for some concurrency control task—, we must
be able to rapidly derive the (sub-) path to the root in
the virtualized structure. For this reason, by numbering
all nodes in the path synopsis, we gain a simple and
effective mechanism called path class reference (PCR).
Such PCRs are used in the content nodes or in index
structures together with SPLIDs serving as a path class
encoding.2

The sketched usage of the path synopsis indicates its
central role as a repository to be used for all structural
references and operations. Although it can be stored
in a little data structure residing in memory, it should
provide indexed access via PCRs and via node names.
Another helpful piece of information to be captured
in the path synopsis is the number of instances for
each path class appearing in the document or other
selectivity or fan-out information supporting query
optimization. Finally, the path synopsis represents a

2. If a node has an empty value, the respective node type must
carry a PCR to map the empty value to the correct path.

kind of type structure which may be efficiently used
for hierarchical locking protocols on the document
structure.

4.2. Elementless Document Storage

Using an elementless layout of a natively stored
document, we want to get rid of the structure part in a
lossless way. For an XML document, only its content
nodes are stored in document order using—in a similar
way as for the complete document—a container as a
set of doubly chained pages. The stored node format
is of variable length and is composed of entries of the
form (SPLID, PCR, value). Otherwise, as illustrated in
Figure 8, its storage format exactly corresponds to the
data structure in Figure 3. Again, the resulting B*-tree
and its split/merge mechanism together with the SPLID
mechanism take care of the storage management and
label stability in case of modifications in the XML
document.

The elementless format only stores the content nodes
carrying prefix-compressed SPLIDs and adjusted PCRs
together with some administration data (2 bytes). As
shown in Figure 8, two aspects increase the content
part as compared to compressed, a PCR (with ad-
ministration data) is added to the node format and
the effectiveness of our prefix compression may get
worse due to the non-dense SPLID sequence. Note,
both aspects only may be critical in case of data-centric
documents because of the unfavorable ratio between
mapping overhead (SPLID + PCR + admin) and the
relatively short values in content nodes. Fortunately,
both effects have only limited influence that our idea
of structure virtualization pays off.

As illustrated in Figure 8, elementless storage has
considerably reduced the density of the SPLID se-
quence, because all SPLIDs of structure nodes were
removed. Obviously, the SPLID density of the com-
plete documents caused the excellent results for prefix
compression (PC). Therefore, we have checked the
influence of this contra-effect to the overall space
reduction. As presented in Figure 9 for the non-dense
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Figure 8: Stored elementless XML document

case, prefix-compressed SPLIDs only decrease storage
space down to ~35%, as compared to ~25% in the
dense case as shown in Figure 2—a trade-off effect
that is acceptable.

Figure 10 (and Table 4 in the Appendix) summarize
our results gained by structure virtualization. Consider-
ing only the compressed SPLIDs and content, the space
for our elementless reference documents does not con-
sume more storage than the plain content. Of course,
mapping data PCRs + admin roughly need 10% of the
plain document size, such that the plain content size
can not be beaten by elementless. However, elementless
compared to the optimized complete document (Figure
6) is reduced once more by ~10% to ~20% of the plain
size. Referring to plain format, we have achieved a
reduction for the optimized document storage down to
~30% to ~50% of the plain size. In case of uniprot,
this saving is 976 MByte. When directly comparing
compressed and elementless, the relative saving ranges
from ~15% to ~25%.

One may argue that this favorable space behavior
is paid by some extra processing overhead, because
coding/decoding and compression/decompression has
to be performed for allocating the documents on disk
and for (partially) reconstructing them for internal
processing or output to the client. However, the com-
paction effect on the XML structures saves disk I/Os
directly proportional to the reduction ratio obtained.
Furthermore, it has a beneficial effect on caching
effectivity, because the same cache size can host a
larger fraction of the XML document in its compacted
form. Therefore, there is some potential for them to
win the contest also for processing times.

4.3. Comparison of Processing Times

Because the document sizes of our reference col-
lection vary by about two orders of magnitude, the
I/O-driven processing times differ by the same ratio—
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ranging from ~45 secs to ~6600 secs. Therefore, it is
unreasonable to compare them directly on an absolute
scale. We rather normalize them to the elapsed times
needed for standard (100%).

The characteristic processing times chosen are the
costs of loading and reconstructing a document thereby
preserving the round-trip property. Sent by a client in
plain format, it is stored resp. fetched in the stan-
dard/compressed/elementless formats on/from disk and
delivered in plain format to the client. As illustrated
in Figure 11, all loading and reconstructing times are
less than the resp. times for standard (loading=100%)
although additional overhead for SPLID encoding and
content compression had to be spent. This fact clearly
confirms the dominating role of I/O in processing
large XML documents. The same observation can
be approved when comparing the processing times
for both format optimizations with each other. By
examining Figure 6 and Figure 10, we can state
that the storage saving gained from choosing format
compressed instead of standard resp. elementless in-
stead of compressed translates in all cases to shorter
processing times for fine-grained document storage and
reconstruction back to the external format.

4.4. Using Indexes on Elementless Documents

Index support is achieved in the same way as de-
scribed in Section 2.4. The various types of indexes
(for content or elements/attributes) refer to the indexed
nodes via SPLIDs. Location of a content node is
performed via the document index, as illustrated in
Figure 8, where the path instance is then recomputed.
The option to include the PCR together with its SPLID
in the reference lists, enables query processing often
without accessing the document itself, because the path
instance can be regained by using the path synopsis
directly. In element/attribute indexes, this extended ref-
erence format (SPLID+PCR) is mandatory for perfor-
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mance reasons, because an algorithmic reconstruction
of the virtualized path instance in the non-existing
structure part is too troublesome.3

In the same way, as we derive the structure or
particular path class instances on demand, we can
answer content-and-structure (CAS) queries only by
using content indexes. Query evaluation on these in-
dexes (B*-trees) delivers a set of SPLIDs together with
the PCRs which enable the in-memory reconstruction
of the paths (structure) belonging to the indexed values
(content). The use of such CAS queries is particu-
larly efficient, because our approach can often avoid
expensive structural joins or twig evaluation [2] and
can derive the path information from the combined
use of SPLIDs and path synopsis. For specific CAS
queries supported by content indexes, up to two orders
of magnitude response-time reduction compared to
traditional approaches were achieved with our XTC
prototype DBMS [8].

4.5. Scalability of Path Synopsis Use

So far, we have tacitly assumed that the document’s
path synopsis is a little data structure that always
can be kept in main memory. This is obviously true
for most of our reference documents where less than
a page is needed for maintaining all path classes.

3. Reconstruction of path instances had to be accomplished start-
ing from the stored leaves (content nodes). SPLID checking and path
synopsis use could then identify the right path instances.

However, this assumption is violated for treebank, a
kind of exotic outlier. To check the influence of size
on path synopsis use, we designed a stress test for its
scalability.

Our abstract approach separated structure from con-
tent and removed all redundancy from the structure
by replacing it by a much more space-economic, how-
ever, functionally equivalent path synopsis. The critical
question is whether or not the processing and storage
benefits will be preserved when the path synopsis
grows such that eventually the size of the structure part
is reached. As opposed to comparing our collection
of fixed-size reference documents under compressed
and elementless, we have created a synthetic document
and scaled it under a specific growth pattern thereby
measuring the loading and reconstruction times under
both storage formats with an initial document size
IDoc. Starting with a document root, we attached as
child-1 a (sub-) tree of IDoc=26 KB and 154 PCRs. By
repeatedly attaching the same tree as child-i (i=2, ..., n),
we enforced a linear growth of the path synopsis from
1 to 2000 occurrences of IDoc (>300,000 PCRs and
>50 MB document size) still residing in main memory.
The test runs using small growth factors (<20) are
disregarded in Figure 12, because extra startup costs
(creation of document container and various indexes
for document, elements, and IDs) dominated the load
and reconstruction cost. Apparently, all our cost mea-
sures (ms per IDoc) remained more or less constant in
the range of >20*IDoc to 2000*IDoc as illustrated
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in Figure 12. This result confirms and extends our
observations from the measurement of Figure 11 and
states the scalability of the path synopsis as long as
it can be kept in main memory (where it is designed
for).

In this paper, we primarily discussed important con-
cepts needed to obtain fine-grained storage structures
for XML documents. Furthermore, we sketched the
potential benefit of compression methods applied to
content nodes. In a thorough empirical study, we
have evaluated the storage consumption of a number
of reference documents for the standard format and
the compressed format. Especially, prefix compression
used in the compressed format contributed to a large
extent to the savings achieved. The still substantial
storage needs for the documents’ structure part gave
rise to develop a path synopsis which, together with the
SPLID and PCR mechanisms, enabled the design of
the elementless format. This kind of structure virtual-
ization really achieved impressive optimization results.
Furthermore, we could show that the size of the path
synopsis is insensitive to the processing times, as long
as it can be kept in main memory.

5. Conclusion

What does this saving achieved by structure en-
coding and content compression mean? For example,
assume uniprot: the plain document (in text format)
arriving at the DBMS has 1821 MBytes. A straight-
forward encoding (VocIDs for the element/attribute
names, uncompressed content, added node labels), here
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denoted as standard, results in 1685 MBytes. Our
optimizations obtain for compressed and elementless
~988 and ~845 MBytes, respectively. Using any of
these models, all declarative or navigational operations
can be applied with the same or improved speed. Even
when storing compressed contents, the use of indexes
does not pose any problem.
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Appendix

The Tables 3 and 4 contain the numeric results of our
empirical evaluation of the different storage formats for
natively stored XML documents


