
1

Source: http://geek-and-poke.com/

2

3

(Source: WIESE, Lena. Advanced Data

Management. 2015. Chapter 3)

The data is “squeezed” into the

relational schema. Data that belongs

together is split into multiple tables and

connected via foreign-key relationships

(normalization). In the application this

data need to be joined again

(denormalization).

4

Horizontal Homogeneity: Each row in

the table has the same columns. When a

new column is added, every row will

have this new column (with many NULL

values => sparse data).

Vertical Homogeneity: Within one

column, all rows have the same data

type.

5

Relational databases are made for

applications that often read and less

often write data.

6

The declarative query language SQL is

very powerful, but often a simple

Put/Get API would be desirable.

Furthermore, SQL is only well-suited for

relational databases. For other

databases, there are better ways, e.g.

XQuery for XML.

7

For supporting ACID transactions, lock

mechanism are needed. To avoid long-

duration locks, transactions should be as

short as possible. For data-analytics or

data-transformation tasks, long

transactions would be desirable.

8

Tables in relational databases cannot be

distributed across multiple nodes

properly. That is why most RDBMS run

on one machine. In distributed

environments, joins are very costly,

because a lot of data has to be shipped

over the network.

9

Schema evolution (adding columns, etc.)

is very costly, because it often requires a

reorganization of the data.

10

Originally, relational databases do not

support data versioning. In some

applications it can be useful to access

historical data, i.e. former versions.

11

Not only structured data, but also semi-

structured data, graph data,

unstructured data, media data (more

later), …

12

When many attribute values are

incomplete or unknown, a fixed schema

would lead to wide tables with many

columns and many NULL values. This

needs a lot of storage and can make

queries inefficient.

13

With a flexible schema, it is possible to

save data with an arbitrary structure

(attributes, data types, nesting). There is

no need to predefine a schema. Within

one data collection, different data items

can look completely different. E.g. in

another item, the hobbies of a seller can

be a comma-separated string.

14

Data is always changing. A database

system must support fast changes, also

schema changes.

15

Data should be distributed across

multiple machines. For an application it

should look like there is only one

location where all data lives. It should

not need to know the exact storage

location for each data item. Horizontal

scalability means that a system can be

extended by adding more machines.

Adding and removing machines should

be possible during runtime and the data

should be distributed, partitioned and

shipped automatically.

16

17

Eric Schmidt.jpg, Author: Gisela

Giardino, Wikimedia Commons, 12 April

2007, 20:24:40

18

19

(At least) 3 Vs describe the

characteristics of Big Data (see

http://www.gartner.com/newsroom/id/

1731916)

20

Huge amount of data is produced by

mobile phones: locations, app-store

data, cloud services, chat protocols,

phone logs, and much more.

21

300 Petabytes (?) = 300 Million Gigabyte

22

23

Furthermore, every visit and “like” of

this contents produces data.

Socmed - Flickr - USDAgov.jpg,

Author: U.S. Department of

Agriculture, Wikimedia Commons, 19

December 2011, 15:38

24

Sensors in cars, planes and colliders

(e.g., the LHC at CERN) produce data so

fast that it is not possible to process it in

real-time.

25

26

This is a relational table, e.g. in MySQL,

SQLite, DB2, PostgreSQL.

You first create the schema (CREATE

TABLE). After that, data can be inserted

(INSERT). Changing the schema is

supported (ALTER TABLE).

27

This is a JSON document. Similar to XML,

it allows to model a tree structure. A

field value can be an atomic value, an

array of values, or a sub-document.

Different from relational databases, the

schema in JSON does not have to be

defined in advance. This schema-

flexibility allows for using arbitrary

attributes when documents are inserted

or updated. Applications often expect a

specific schema of the data (Schema-on-

Read).

28

Unstructured data do not follow any

schema. They are very hard to analyze

and process. Problems here are: slang

(„pics“), stop words („a“, „in“), word

forms („had“), compound words, typos

(„uploa“), references (Pics of Frankfurt?

Pics of the mother? Pics of a person

called Will?), and more.

29

NoSQL databases are non-relational.

30

NoSQL databases are distributed. A

scale-out (adding more machines) is

easily possible. Relational databases

often run on one single powerful

machine because joins and other

operations are hard to execute across

multiple nodes. Often, the only

possibility to increase the performance

in an RDBMS, is a scale up (add more

RAM or a better CPU on the machine). A

scale up is expensive and limited.

31

In the literature, NoSQL is categorized

using these four classes. http://nosql-

database.org/ shows a list of more than

200 NoSQL databases. Most of them

belong to one of these four classes, but

there are also multi-media databases,

object databases, XML databases and

more.

32

33

Each database system has a so-called

CRUD-API. These are methods to create,

read, update and delete data items. In

SQL, the equivalent language constructs

are INSERT, SELECT, UPDATE, and

DELETE. In NoSQL databases, the CRUD-

API is often much simpler than SQL.

34

A key-value store saves key-value pairs

(like a Hash Map). The values can be

complex, e.g. a list or a map. The API is

very simple: GET key, SET key value, etc.

RPUSH adds an item to the right end of

a list. RPOP reads and removes this

item. LPUSH and LPOP do the same

thing from the left of the list.

35

Key-value stores, wide-colum stores and

document databases belong to the so-

called aggregate-oriented stores. Here,

aggregate means „the whole thing“. So,

everything that belongs together is

stored together. An example: A blog

entry is stored with all its comments and

a view counter instead of splitting it into

multiple tables and connecting the

fragments via foreign keys. All

aggregate-oriented stores have the

concept of a unique object ID. Often,

data partitioning across multiple

machines is based on this ID.

Partitioning is also called sharding.

36

When range partitioning is used, every

machine stores data items that have a

specific range of keys. Consequently,

there must exist an order on the keys.

The ranges must be chosen wisely, so

that data items are equally distributed

over all machines. This can be reached

by an automatic repartitioning

performed periodically. In this task, the

ranges are changed, which leads to

moving data from one machine to

another. Read and write operations that

are based on the partitioning key always

know which machine to access.

37

One drawback of range partitioning:

When the ID increases continuously, all

the latest entries are placed on the

same machine. As there usually are

more accesses to recent data items than

to historic data, the load on this one

machine is much higher than on the

others. Furthermore, repartitioning is

necessary very often. As an alternative,

hash partitioning can be used to store a

data item on a machine based on its

hash value. The hash function h(key)

determines where to store the item with

the given key. Example: h(key) = key % N

where N=number of machines. The

domain of the hash function is [0..N-1].

For a non-numeric key, it is necessary to

convert it into a number first, e.g. by

using the ASCII representation or using

MD5 or Java‘s hashCode().

38

In Redis, SELECT is not a read command.

It is used to switch to a specific database

on which the following commands are

executed. Databases are enumerated.

39

With hashes, the value of a key-value

pair can be a list of key-value pairs. This

leads to a data model similar to wide-

column stores (more later). Like the SET

command in Redis, HMSET has upsert

behavior. This means, if a hash key is

already present, its value will be

overridden.

40

Sorted sets are a data structure in Redis

to store a set of values where each value

has a score. In the table on this slide,

there are categories. ZADD adds a new

value into the set with the given score,

ZREM removes a value, ZINC increases

the value by the given number (negative

values are allowed). Scores are floating

point numbers.

As usual in sets, there are no duplicates

and the items are unordered. The score

makes sorted sets sortable. ZCARD

delivers the cardinality of the set, i.e.

the number of elements.

41

ZREVRANK returns 0 in this example,

because Asterix is the best-sold item in

the book category. ZRANK delivers the

rank, when the scores are sorted in

ascending order, so 0 for the item with

the lowest score.

The ZREVRANGE query delivers the top-

3 of the books. ZRANGE would deliver

the last 3.

ZRANGEBYSCORE delivers all books that

have a score between 90 and infinity. In

this example, the diary and Asterix (in

this order).

With the limit clause, at most 100

entries are delivered, beginning from

item 0 (the item with the lowest score

greater or equal than 90). Remark:

When ZREVRANGEBYSCORE is used, the

ranges have to be swapped, e.g. inf 90

LIMIT 0 100. This finds Asterix first, then

the diary.

With the option WITHSCORES the scores

are part of the result.

42

Riak is another key-value score. It is

inspired by Amazon‘s Dynamo (2007).

Key-value pairs are saved in so-called

buckets. Values can be of an arbitrary

type, e.g. JSON (in the right example

bucket). Different from document

databases like MongoDB, there are

basically no other operations possible

than PUT and GET.

43

Riak has a REST API over HTTP. This

makes it possible to use Riak with any

programming language without special

client libraries. Furthermore, HTTP

caches can be used to cache queries and

their results.

44

45

An HBase table consists of rows that

have a flexible schema. There always is a

row-id. With a PUT operation, arbitrary

columns can be set. Different from

relational databases, one does not need

to predefine the column schema first.

HBase uses range partitioning to

distribute tables across multiple

machines.

46

At table-creation time, column families

must be set. These are used to group

the columns.

The query below hides all column

families except the Boss-of family.

47

The first parameter of CREATE is the

table name. The other parameters are

used to define the column families.

48

Before a table can be dropped, it must

be disabled first. A useful command is

TRUNCATE ‘t‘. It executes DISABLE,

DROP and CREATE, to drop and recreate

the table with the same column families.

This is the easiest way to empty a table.

49

When column families are defined, on

can set the number of value versions

that HBase should keep in the columns

of that family. The default value is 3.

VERSION=>-1 would be an unlimited

number of versions. Both in the HBase

shell (console) and via the API, old

versions can be accessed. By default, a

read operation delivers the current

version.

50

The column-family parameter time-to-

live (TTL) defines the number of seconds

after which a value in the columns in

this family should be deleted

automatically.

51

HBase offers strong consistency.

Atomicity is given for updates within a

single row. When an application

modifies multiple rows, these updates

cannot be executed within one

transaction. Hbase can read very fast.

Also, writes are very fast, when new

rows are written. Updates on existing

rows are the slowest operation.

52

In this example table, user actions are

logged. The row-id consists of the

username and a timestamp.

HBase does not have any data types

except Byte arrays. That is why every

value has to be converted to/from

Byte[] before writing and after reading.

53

The row-id should be chosen close to

the way how the data is accessed. In this

table, a scan command can find all login

activities within the given time range.

Range queries over row-ids are very fast

in HBase.

54

55

MongoDB (from „humongous“).

The most popular NoSQL database.

56

The MongoDB University offers free

video courses to different topics. One

course lasts seven weeks. In each week

there are two hours of video material

and simple homework which has to be

submitted. After a successful

participation and a final exam, you get a

certificate.

57

The next courses star on 02.08.2016.

Every Tuesday, new course material and

new exercises are published. The course

M102 is very good for the beginning.

The courses M101* are also good, but

there the focus is on coupling MongoDB

with a programming language, here

Python, Java, Node.js, .NET.

58

In the document database MongoDB,

the data is stored in JSON format. Every

document has an unique _id.

59

MongoDB runs on Windows, Linux and

Mac. The easiest way to install is to

download it as a zip file and unzip it. The

program mongod starts the server

process. When a mongod is running, the

mongo shell (mongo) can be used to

communicate with the database using

JavaScript commands.

60

The MongoDB server is started using

mongod. The console output lists useful

information such as the server storing

the data (/data/db) and the log

destination (/data/db/journal).

Moreover, the log output contains the

process ID (in case you need to kill it)

and the port number for MongoDB.

Parameters can be set manually when

starting the sever: mongod --port 27017

--dbpath /data/db --logpath

/data/db/journal

Using the --fork parameter will start the

process in the background. Without this

parameter, mongod will end when the

terminal window is closed (e.g., with

Ctrl+c).

61

The shell can be started with the

command mongo. The information

“connecting to test” shows that the shell

is connected with the database test.

With “use differentdb”, one can switch

to another database.

62

Here are six JSON datatypes. A JSON

field consists of a field name (e.g.,

“currency”) and a value (e.g., “EURO”).

The field name (the part left of the

colon) is always a string and is therefore

written in quotation marks. When using

JavaScript (e.g. in the mongo shell),

these quotation marks are optional for

names without spaces, dots and other

special characters. The field value (right

of the colon) can be a number (integer,

float, …), a null value or a Boolean (true

or false) without quotation marks.

Everything in quotation marks is a string.

With { }, sub-documents can be nested.

Arrays are written in [“box”, “brackets”].

Field names are unique within one

document, but reuse in sub-documents

is allowed.

63

This is a valid JSON document. An

arbitrary nesting and using

heterogeneous types is allowed.

64

A MongoDB instance consists of

multiple databases. “show dbs” shows

the list of databases. Within one

database, there are many collections. A

list of collection names can be printed

with “show collections”.

65

„db“ shows the name of the current

database. With “use”, one can switch to

another database. A find() command

opens a cursor, which is used in an

application by iterating over it with

next() commands. In the shell, the first

ten documents are printed and the

cursor remains opened, so that one can

fetch the next ten elements with the “it”

(“iterate”) command.

“fineOne()” is a useful command to

show how typical documents within one

collection look like. It just delivers one

document.

66

67

.limit limits the number of result

documents. .sort sorts the result by one

or more sort criteria. Except .limit and

.skip, nearly every method in MongoDB

takes a JSON document as a parameter.

For sort, the key is the field name for

the ordering and the value is the

direction: 1 (ascending), -1

(descending).

When .skip is used together with limit,

the given number of documents are

skipped.

In the third query on this slide, the

documents are ordered by born

ascending and then - if two documents

have the same born value – name

descending. So Ulrike would be before

Mike. Due to the skip, Ulrike is skipped

and Mike and Gregor are in the result.

68

The first parameter of find is a selection

(see next slide). The second parameter

can be used for a projection, i.e.

defining which field should be in the

result, and which not. The

projectionargument is a JSON

document. A 1 stands for including the

field, 0 for excluding it. The first query

gives all fields but name (here: _id and

born). The _id is always part of the

result, unless it is explicitly excluded.

The second query shoes the name and

_id, the third query only the name.

69

All parameters of find are optional. The

first one is for the selection. The queries

have a query-by-example pattern. The

given selection JSON document shows

how the result document should look

like. For comparisons different from

equality, {$operator:value} must be

used. The second query finds all people

having a year of birth greater than 1960.

Other comparison operators are $gte

(greater or equal), $lt (less than), $lte,

$ne (not equal). When multiple

selections are given, they are and-

connected. So, a document has to fulfil

all of them. $or can be used with an

array of criteria to make an or-

connection (see next slide).

70

count() can be called on a collection or a

query (cursor). It shows the number of

documents.

71

When an insert does not specify the _id

field, it is automatically set with an

unique ObjectId. When the _id is set

manually, it must be unique within the

given collection, otherwise the insert

will fail.

72

The update command takes two

parameters: The first is a criteria which

documents to update (like in find()). The

second parameter is a new document

which will completely replace the

selected document. In the new

document, the _id must not change. It is

the only field that remains unchanged

after the update.

Remark: The update command only

updates at most one single document.

When the criteria is fulfilled for multiple

documents, only one document is

changed.

73

The optional third parameter of update

is for options. The option multi:true

allows for updating multiple documents.

The update is executed on every

document fulfilling the predicate (here:

born>0).

The upsert:true option is a combination

of insert and update. If no document

fulfills the update criterion, the given

document will be inserted. Otherwise,

the matching document will be updated.

If the criterion contains an _id, the

inserted document will have this _id.

Other criteria do not have any influence

on the new document.

74

With $set : { field : value, field : value },

fields can be changed in an existing

document. When the field is not yet

existing, it will be added. Other fields

are not influenced by this update.

Options like multi and upserts are

possible here, too.

$inc increases the value by the given

number. If the field does not exist, it will

be initialized with the increment value

(here: 1). Negative increment values are

possible. $uset removes the field from

the document.

Other modifiers like $mul, $rename,

$setOnInsert are possible. See the

Mongo DB documentation.

75

The remove command deletes all

documents matching the given criterion.

The first query removes the person with

_id 4, the second query deletes all

people, which are born after 1960, the

third query deletes all people. The

difference between remove({}) and drop

is the following: Remove deletes one

document after the other. Drop is much

faster.

76

The second query on this slide does not

make sense. It delivers no result. A

document would be found, if the born

field has exactly the given structure.

Therefore, for checking sub-document

fields, the dot-notation is used:

field.subfield

77

78

When an array field is compared to a

value, it is evaluated as true when the

array contains the value.

The second command on this slide uses

the $push modifier to add the hobby

swimming to all documents. If a

document does not have the hobbies

array, it will be initialized with an one-

element array that contains

“swimming”. With $pull, an element can

be removed from an array.

Arrays are ordered. Similar to Redis, the

last element in an array can be removed

using $pop : { hobbies: 1 }. The first

element can be removed using $pop : {

hobbies: -1 }.

79

Arrays can contain duplicates. $pull

removes all hits.

Instead of $push, $addToSet can be used

to insert an element into an array. If it is

already in there, it will not be inserted.

This is how MongoDB supports sets.

80

createIndex creates an index on a given

field. Similar to the sort method, 1 / -1

defines the sort order: ascending or

descending. MongoDB uses a B+ tree as

index structure. The index makes exact-

match queries, range queries and sort

queries on the given field very fast.

There always is an index on the _id. That

is why queries on the _id are very fast.

81

If an index is created on a field which is

used for arrays, the index will

automatically become a multi-key index.

When a document is inserted, each

value in the array is inserted into the

index, together with pointers to the

document. The multi-key index

accelerates containment queries on

arrays.

82

The MongoDB aggregation pipeline

makes it possible to write complex

queries. The aggregate operation takes

an array of steps which should be

executed. The example on this slide uses

five steps.

83

The _id contains the field on which the

data is grouped by. With a dollar sign,

field values from the input document (or

the previous step) can be accessed.

Other fields must contain accumulators,

i.e. aggregation functions.

84

In the $unwind step, an array is split into

its elements. The result is that every

document is there multiple times, as

often as the array has elements.

When the array is empty or not present,

the document is skipped.

85

Use the aggregation pipeline to

transform the person collection into the

given form.

86

87

The database systems presented so far

scale in the size. With the usage of

partitioning, large data sets can be

distributed across multiple machines.

Key-value stores do not allow complex

structure. Even if lists and hashes are

used, a data item is still a key-value pair.

Wide-column stores and document

databases allow more complex

structures, but the complexity is limited

to one single data item. In graph

databases, relationships between data

items can be stored.

88

A graph is defined by a set of all its

vertices and edges that connect the

vertices.

89

RDF is very important for the sematic

web. Every expression is a triplet:

subject, predicate, object. The subject is

a resource (identified by a URI). The

object is either a literal (string, number,

…) or the URI of another resource.

This example is from the RDF database

DBPedia.org

The query on this slide is given in the

language SPARQL. Expressions in SPARQL

also have the subject-predicate-object

form. The shown query finds the name

of the county in which the main station

of Krefeld is located.

90

1) Data is stored in the graph (in

vertices and edges), not in tables

2) Edges (information about

neighbors) are stored directly within

the node data item.

3) When the graph grows, the

performance of queries stays the

same. Costs for traversing the graph

depend only on the in- and out-

degree of the vertex, i.e. the

number of incoming and outgoing

edges.

4) Typical operations are traversing

from vertex to vertex via edges. To

quickly find vertexes and edges,

there are index structures.

91

Different from the other classes of

NoSQL databases, graph databases have

no simple put/get API but a query

language or a more complex API.

Vertices have an internal ID, a label and

properties (see next slide). Edges

connect to vertices and also have a label

and properties. Edges can be directed or

undirected (in most graph databases,

like Neo4J, they can only be directed).

92

Both vertices and edges can have

properties of the form key:value, like in

JSON. Furthermore they have labels,

here “person“ and “friend“.

The shown query is a Cypher query

(more later).

93

Tinkerpop is an open framework that

consists of multiple components.

Tinkerpop is independent of an actual

graphdatabase and it acts like a DB

Gateway. That makes a migration from

one graph database to another simple

(like JDBC for relational databases).

Many graph databases are supported:

Neo4j, Titan, OrientDB, DEX,

TinkerGraph, …

94

Blueprints is the basis of the Tinkerpop

stack. The API can be used to make read

and write accesses to a graph in Java.

The other Tinkerpop components

(Gremlin etc.) use Blueprints.

95

Here, a Tinkergraph is opened (an in-

memory graph database).

The Blueprints API has methods to

iterate over vertices and edges of a

graph, to find specific vertices and

edges, e.g. graph.getVertex(“1”) to find

the vertex with the ID 1. From a vertex,

one can use methods to read its

properties and access incoming and

outgoing edges. This way, one can

navigate to neighbor vertices.

96

These are some example queries in

Gremlin. The first one finds the first

names of all person vertices, the second

one the number of vertices in the graph.

The bottom query delivers all student

vertices that are followed by the person

with the first name Kai. This query

shows how to traverse the graph: Start

at the vertex with first name Kai,

navigate to the neighbors using the

edges with label “follows” and filter out

all vertices which do not have the label

student.

97

The Apache Lucene Index makes it

possible to quickly find nodes and edges

that fulfil specific criteria. Full-text

search is supported.

98

After starting the Neo4J server process,

the web interface can be used and

queries can be sent using the REST API.

99

While Gremlin and the APIs of graph

databases are used to navigate through

the graph, Cypher is a language where

you give a specific pattern that is

searched in the graph. For every match,

the rest of the query is evaluated. In the

MATCH pattern, variables can be

introduced. These variables can be

accessed in other query parts (see next

slide).

100

Paranthesis: (Node)

after the colon: Label

Brackets: [Edge]

The first item written in parenthesis or

brackets: (variable) or [variable]

Edge directions: <-- or --> or -- (both

directions), or -[edge]- etc.

Curly braces: {Property: „value“,

Property: „value“}

101

Variables can be omitted if they are

never needed.

Labels are also optional. MATCH

({fristname:”Kai”}) would also work. But

maybe a cat with the name Kai is also

found, not only a person ;-) Omitting

edge labels is also possible, e.g.

(:Comment)<--(e:Person) Then, the edge

is traversed independent from its label.

102

103

